These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
454 related articles for article (PubMed ID: 25589157)
1. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering. Naghashzargar E; Farè S; Catto V; Bertoldi S; Semnani D; Karbasi S; Tanzi MC J Appl Biomater Funct Mater; 2015 Jul; 13(2):e156-68. PubMed ID: 25589157 [TBL] [Abstract][Full Text] [Related]
2. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927 [TBL] [Abstract][Full Text] [Related]
4. Three-layered scaffolds for artificial esophagus using poly(ɛ-caprolactone) nanofibers and silk fibroin: An experimental study in a rat model. Chung EJ; Ju HW; Park HJ; Park CH J Biomed Mater Res A; 2015 Jun; 103(6):2057-65. PubMed ID: 25294581 [TBL] [Abstract][Full Text] [Related]
5. Aligned silk fibroin/poly-3-hydroxybutyrate nanofibrous scaffolds seeded with adipose-derived stem cells for tendon tissue engineering. Sarıkaya B; Gümüşderelioğlu M Int J Biol Macromol; 2021 Dec; 193(Pt A):276-286. PubMed ID: 34687764 [TBL] [Abstract][Full Text] [Related]
7. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. Kandhasamy S; Arthi N; Arun RP; Verma RS Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050 [TBL] [Abstract][Full Text] [Related]
9. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Kim H; Che L; Ha Y; Ryu W Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():324-35. PubMed ID: 24857500 [TBL] [Abstract][Full Text] [Related]
10. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
11. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Park YR; Ju HW; Lee JM; Kim DK; Lee OJ; Moon BM; Park HJ; Jeong JY; Yeon YK; Park CH Int J Biol Macromol; 2016 Dec; 93(Pt B):1567-1574. PubMed ID: 27431792 [TBL] [Abstract][Full Text] [Related]
13. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications. Mirmusavi MH; Zadehnajar P; Semnani D; Karbasi S; Fekrat F; Heidari F Int J Biol Macromol; 2019 Jul; 132():822-835. PubMed ID: 30940593 [TBL] [Abstract][Full Text] [Related]
15. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications. Zhang H; Liu X; Yang M; Zhu L Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():8-13. PubMed ID: 26117733 [TBL] [Abstract][Full Text] [Related]
16. PLGA nanofiber-coated silk microfibrous scaffold for connective tissue engineering. Sahoo S; Toh SL; Goh JC J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):19-28. PubMed ID: 20665681 [TBL] [Abstract][Full Text] [Related]
17. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds. Kim BS; Park KE; Kim MH; You HK; Lee J; Park WH Int J Nanomedicine; 2015; 10():485-502. PubMed ID: 25624762 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. Zhang K; Wang H; Huang C; Su Y; Mo X; Ikada Y J Biomed Mater Res A; 2010 Jun; 93(3):984-93. PubMed ID: 19722280 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo. Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441 [No Abstract] [Full Text] [Related]