BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 25589374)

  • 1. An In Vitro Evaluation of Emboli Trajectories Within a Three-Dimensional Physical Model of the Circle of Willis Under Cerebral Blood Flow Conditions.
    Fahy P; Malone F; McCarthy E; McCarthy P; Thornton J; Brennan P; O'Hare A; Looby S; Sultan S; Hynes N; Morris L
    Ann Biomed Eng; 2015 Sep; 43(9):2265-78. PubMed ID: 25589374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro assessment of the cerebral hemodynamics through three patient specific circle of Willis geometries.
    Fahy P; Delassus P; McCarthy P; Sultan S; Hynes N; Morris L
    J Biomech Eng; 2014 Jan; 136(1):011007. PubMed ID: 24141631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the collateral capacity of the circle of Willis of patients with severe carotid artery stenosis by 3D computational modeling.
    Long Q; Luppi L; König CS; Rinaldo V; Das SK
    J Biomech; 2008 Aug; 41(12):2735-42. PubMed ID: 18674765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracranial collateralization determines hemodynamic forces for carotid plaque disruption.
    Lal BK; Beach KW; Sumner DS
    J Vasc Surg; 2011 Nov; 54(5):1461-71. PubMed ID: 21820834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Appraising the plasticity of the circle of Willis: a model of hemodynamic modulation in cerebral arteriovenous malformations.
    Chuang YM; Guo W; Lin CP
    Eur Neurol; 2010; 63(5):295-301. PubMed ID: 20424460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of anatomic variations of circle of Willis on cerebral blood distribution during posture change from supination to standing: a model study.
    Zhang C; Li S; Pu F; Fan Y; Li D
    Biomed Mater Eng; 2014; 24(6):2371-80. PubMed ID: 25226937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embolus trajectory through a physical replica of the major cerebral arteries.
    Chung EM; Hague JP; Chanrion MA; Ramnarine KV; Katsogridakis E; Evans DH
    Stroke; 2010 Apr; 41(4):647-52. PubMed ID: 20150542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows.
    Alastruey J; Parker KH; Peiró J; Byrd SM; Sherwin SJ
    J Biomech; 2007; 40(8):1794-805. PubMed ID: 17045276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D models of blood flow in the cerebral vasculature.
    Moore S; David T; Chase JG; Arnold J; Fink J
    J Biomech; 2006; 39(8):1454-63. PubMed ID: 15953607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Dual Role of Cerebral Autoregulation and Collateral Flow in the Circle of Willis After Major Vessel Occlusion.
    Kennedy McConnell F; Payne S
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1793-1802. PubMed ID: 27831856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Assessment of the Relation Between Embolism Source and Embolus Distribution to the Circle of Willis for Improved Understanding of Stroke Etiology.
    Mukherjee D; Jani ND; Selvaganesan K; Weng CL; Shadden SC
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27367268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of cerebrovascular reactivity including the circle of willis and cortical anastomoses.
    Ursino M; Giannessi M
    Ann Biomed Eng; 2010 Mar; 38(3):955-74. PubMed ID: 20094916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of jugular venous return and circle of Willis in a theoretical human model of selective brain cooling.
    Neimark MA; Konstas AA; Laine AF; Pile-Spellman J
    J Appl Physiol (1985); 2007 Nov; 103(5):1837-47. PubMed ID: 17761787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental investigation of the hemodynamic variations due to aplastic vessels within three-dimensional phantom models of the circle of Willis.
    Fahy P; McCarthy P; Sultan S; Hynes N; Delassus P; Morris L
    Ann Biomed Eng; 2014 Jan; 42(1):123-38. PubMed ID: 24018609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circle of Willis blood velocity and flow direction after common carotid artery ligation for neonatal extracorporeal membrane oxygenation.
    Raju TN; Kim SY; Meller JL; Srinivasan G; Ghai V; Reyes H
    Pediatrics; 1989 Mar; 83(3):343-7. PubMed ID: 2645565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Circle of Willis Anatomy Variations in Cardio-embolic Stroke: A Patient-Specific Simulation Based Study.
    Mukherjee D; Jani ND; Narvid J; Shadden SC
    Ann Biomed Eng; 2018 Aug; 46(8):1128-1145. PubMed ID: 29691787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of contrast agent injection on physiological flow in the circle of Willis.
    Mulder G; Bogaerds AC; Rongen P; van de Vosse FN
    Med Eng Phys; 2011 Mar; 33(2):195-203. PubMed ID: 20980191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Patient-Specific Three-Dimensional Hemodynamic Model of the Circle of Willis.
    Rezaie H; Ashrafizadeh A; Mojra A
    Cardiovasc Eng Technol; 2017 Dec; 8(4):495-504. PubMed ID: 28913763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic assessment and computation on vertebral artery stenosis.
    Sui JX; Yang L; Shi HZ
    Technol Health Care; 2015; 23 Suppl 1():S83-8. PubMed ID: 26410333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the circle of Willis to assess the effect of anatomical variations on the development of unilateral internal carotid artery stenosis.
    Zhang C; Wang L; Li X; Li S; Pu F; Fan Y; Li D
    Biomed Mater Eng; 2014; 24(1):491-9. PubMed ID: 24211932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.