These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 25589446)
1. LcBiP, a endoplasmic reticulum chaperone binding protein gene from Lycium chinense, confers cadmium tolerance in transgenic tobacco. Guan C; Jin C; Ji J; Wang G; Li X Biotechnol Prog; 2015; 31(2):358-68. PubMed ID: 25589446 [TBL] [Abstract][Full Text] [Related]
2. LcSABP2, a salicylic acid binding protein 2 gene from Lycium chinense, confers resistance to triclosan stress in Nicotiana tabacum. Guan C; Wang C; Li Q; Ji J; Wang G; Jin C; Tong Y Ecotoxicol Environ Saf; 2019 Nov; 183():109516. PubMed ID: 31394375 [TBL] [Abstract][Full Text] [Related]
3. LcMKK, a MAPK kinase from Lycium chinense, confers cadmium tolerance in transgenic tobacco by transcriptional upregulation of ethylene responsive transcription factor gene. Guan C; Ji J; Li X; Jin C; Wang G J Genet; 2016 Dec; 95(4):875-885. PubMed ID: 27994186 [TBL] [Abstract][Full Text] [Related]
4. GR1-like gene expression in Lycium chinense was regulated by cadmium-induced endogenous jasmonic acids accumulation. Ma Z; An T; Zhu X; Ji J; Wang G; Guan C; Jin C; Yi L Plant Cell Rep; 2017 Sep; 36(9):1457-1476. PubMed ID: 28656324 [TBL] [Abstract][Full Text] [Related]
5. OsACA6, a P-type 2B Ca(2+) ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load. Shukla D; Huda KM; Banu MS; Gill SS; Tuteja R; Tuteja N Planta; 2014 Oct; 240(4):809-24. PubMed ID: 25074587 [TBL] [Abstract][Full Text] [Related]
6. A GSHS-like gene from Lycium chinense maybe regulated by cadmium-induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis. Guan C; Ji J; Jia C; Guan W; Li X; Jin C; Wang G Plant Cell Rep; 2015 May; 34(5):871-84. PubMed ID: 25627256 [TBL] [Abstract][Full Text] [Related]
7. The ER luminal binding protein (BiP) alleviates Cd(2+)-induced programmed cell death through endoplasmic reticulum stress-cell death signaling pathway in tobacco cells. Xu H; Xu W; Xi H; Ma W; He Z; Ma M J Plant Physiol; 2013 Nov; 170(16):1434-41. PubMed ID: 23867017 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning and identification of a flavanone 3-hydroxylase gene from Lycium chinense, and its overexpression enhances drought stress in tobacco. Song X; Diao J; Ji J; Wang G; Guan C; Jin C; Wang Y Plant Physiol Biochem; 2016 Jan; 98():89-100. PubMed ID: 26650932 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Guan Z; Chai T; Zhang Y; Xu J; Wei W Chemosphere; 2009 Jul; 76(5):623-30. PubMed ID: 19473687 [TBL] [Abstract][Full Text] [Related]
10. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. Valente MA; Faria JA; Soares-Ramos JR; Reis PA; Pinheiro GL; Piovesan ND; Morais AT; Menezes CC; Cano MA; Fietto LG; Loureiro ME; Aragão FJ; Fontes EP J Exp Bot; 2009; 60(2):533-46. PubMed ID: 19052255 [TBL] [Abstract][Full Text] [Related]
11. LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Wu D; Ji J; Wang G; Guan C; Jin C Plant Cell Rep; 2014 Dec; 33(12):2033-45. PubMed ID: 25182480 [TBL] [Abstract][Full Text] [Related]
12. A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. Saad RB; Hsouna AB; Saibi W; Hamed KB; Brini F; Ghneim-Herrera T J Plant Physiol; 2018 Dec; 231():234-243. PubMed ID: 30312968 [TBL] [Abstract][Full Text] [Related]
13. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Hu W; Huang C; Deng X; Zhou S; Chen L; Li Y; Wang C; Ma Z; Yuan Q; Wang Y; Cai R; Liang X; Yang G; He G Plant Cell Environ; 2013 Aug; 36(8):1449-64. PubMed ID: 23356734 [TBL] [Abstract][Full Text] [Related]
14. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Yan H; Jia H; Chen X; Hao L; An H; Guo X Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532 [TBL] [Abstract][Full Text] [Related]
15. Thymol Mitigates Cadmium Stress by Regulating Glutathione Levels and Reactive Oxygen Species Homeostasis in Tobacco Seedlings. Ye X; Ling T; Xue Y; Xu C; Zhou W; Hu L; Chen J; Shi Z Molecules; 2016 Oct; 21(10):. PubMed ID: 27754435 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of the iron transporter NtPIC1 in tobacco mediates tolerance to cadmium. Gong X; Yin L; Chen J; Guo C Plant Cell Rep; 2015 Nov; 34(11):1963-73. PubMed ID: 26209973 [TBL] [Abstract][Full Text] [Related]
17. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity. Gorinova N; Nedkovska M; Todorovska E; Simova-Stoilova L; Stoyanova Z; Georgieva K; Demirevska-Kepova K; Atanassov A; Herzig R Environ Pollut; 2007 Jan; 145(1):161-70. PubMed ID: 16762468 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress. Ning H; Zhang C; Yao Y; Yu D Biotechnol Lett; 2010 Apr; 32(4):557-64. PubMed ID: 19953300 [TBL] [Abstract][Full Text] [Related]
19. Cloning of a cytosolic ascorbate peroxidase gene from Lycium chinense Mill. and enhanced salt tolerance by overexpressing in tobacco. Wu G; Wang G; Ji J; Gao H; Guan W; Wu J; Guan C; Wang Y Gene; 2014 Jun; 543(1):85-92. PubMed ID: 24704025 [TBL] [Abstract][Full Text] [Related]
20. Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. Ren Y; Chen Y; An J; Zhao Z; Zhang G; Wang Y; Wang W Plant Sci; 2018 May; 270():245-256. PubMed ID: 29576078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]