These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 25589504)
1. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy. Ishikawa M; Tanaka K; Endo S; Hoshi M J Radiat Res; 2015 Mar; 56(2):391-6. PubMed ID: 25589504 [TBL] [Abstract][Full Text] [Related]
2. Development of real-time thermal neutron monitor using boron-loaded plastic scintillator with optical fiber for boron neutron capture therapy. Ishikawa M; Ono K; Sakurai Y; Unesaki H; Uritani A; Bengua G; Kobayashi T; Tanaka K; Kosako T Appl Radiat Isot; 2004 Nov; 61(5):775-9. PubMed ID: 15308143 [TBL] [Abstract][Full Text] [Related]
3. Early clinical experience utilizing scintillator with optical fiber (SOF) detector in clinical boron neutron capture therapy: its issues and solutions. Ishikawa M; Yamamoto T; Matsumura A; Hiratsuka J; Miyatake S; Kato I; Sakurai Y; Kumada H; Shrestha SJ; Ono K Radiat Oncol; 2016 Aug; 11(1):105. PubMed ID: 27506665 [TBL] [Abstract][Full Text] [Related]
4. Performance measurement of the scintillator with optical fiber detector for boron neutron capture therapy. Komeda M; Kumada H; Ishikawa M; Nakamura T; Yamamoto K; Matsumura A Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S254-7. PubMed ID: 19398347 [TBL] [Abstract][Full Text] [Related]
5. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments. Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833 [TBL] [Abstract][Full Text] [Related]
6. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy. Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907 [TBL] [Abstract][Full Text] [Related]
7. Development of a tiny neutron probe with an optical fibre for BNCT. Ito Y; Katano G; Harano H; Matsumoto T; Uritani A; Kudo K; Kobayashi K; Yoshimoto T; Sakurai Y; Kobayashi T; Mori C Radiat Prot Dosimetry; 2004; 110(1-4):619-22. PubMed ID: 15353718 [TBL] [Abstract][Full Text] [Related]
8. Accelerator-based BNCT. Kreiner AJ; Baldo M; Bergueiro JR; Cartelli D; Castell W; Thatar Vento V; Gomez Asoia J; Mercuri D; Padulo J; Suarez Sandin JC; Erhardt J; Kesque JM; Valda AA; Debray ME; Somacal HR; Igarzabal M; Minsky DM; Herrera MS; Capoulat ME; Gonzalez SJ; del Grosso MF; Gagetti L; Suarez Anzorena M; Gun M; Carranza O Appl Radiat Isot; 2014 Jun; 88():185-9. PubMed ID: 24365468 [TBL] [Abstract][Full Text] [Related]
9. Application of a Bonner sphere spectrometer for the determination of the angular neutron energy spectrum of an accelerator-based BNCT facility. Mirzajani N; Ciolini R; Di Fulvio A; Esposito J; d'Errico F Appl Radiat Isot; 2014 Jun; 88():216-20. PubMed ID: 24461556 [TBL] [Abstract][Full Text] [Related]
10. Project for the development of the linac based NCT facility in University of Tsukuba. Kumada H; Matsumura A; Sakurai H; Sakae T; Yoshioka M; Kobayashi H; Matsumoto H; Kiyanagi Y; Shibata T; Nakashima H Appl Radiat Isot; 2014 Jun; 88():211-5. PubMed ID: 24637084 [TBL] [Abstract][Full Text] [Related]
11. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom. Lee DJ; Han CY; Park SH; Kim JK Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726 [TBL] [Abstract][Full Text] [Related]
12. On accelerator-based neutron sources and neutron field characterization with low energy neutron spectrometer based on position sensitive 3He counter. Murata I; Miyamaru H; Kato I; Mori Y Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S288-91. PubMed ID: 19376716 [TBL] [Abstract][Full Text] [Related]
13. Design of thermal neutron beam based on an electron linear accelerator for BNCT. Zolfaghari M; Sedaghatizadeh M Appl Radiat Isot; 2016 Dec; 118():149-153. PubMed ID: 27640175 [TBL] [Abstract][Full Text] [Related]
14. Development of target system for intense neutron source of p-Li reaction. Kamada S; Takada M; Suda M; Hamano T; Imaseki H; Hoshi M; Fujii R; Nakamura M; Sato H; Higashimata A; Arai S Appl Radiat Isot; 2014 Jun; 88():195-7. PubMed ID: 24786900 [TBL] [Abstract][Full Text] [Related]
15. Current progress and future prospects of the VITA based neutron source. Aleynik V; Bashkirtsev A; Kanygin V; Kasatov D; Kuznetsov A; Makarov A; Schudlo I; Sorokin I; Taskaev S; Tiunov M Appl Radiat Isot; 2014 Jun; 88():177-9. PubMed ID: 24369890 [TBL] [Abstract][Full Text] [Related]
16. DESIGN IMPROVEMENT OF A LIQUID-MODERATOR-BASED NEUTRON SPECTROMETER FOR BNCT. Tamaki S; Kusaka S; Sato F; Murata I Radiat Prot Dosimetry; 2018 Aug; 180(1-4):300-303. PubMed ID: 29088420 [TBL] [Abstract][Full Text] [Related]
17. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT. Minsky DM; Kreiner AJ Appl Radiat Isot; 2014 Jun; 88():233-7. PubMed ID: 24345525 [TBL] [Abstract][Full Text] [Related]
18. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors. Blue TE; Yanch JC J Neurooncol; 2003; 62(1-2):19-31. PubMed ID: 12749700 [TBL] [Abstract][Full Text] [Related]
19. Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy. Inoue R; Hiraga F; Kiyanagi Y Appl Radiat Isot; 2014 Jun; 88():225-8. PubMed ID: 24440538 [TBL] [Abstract][Full Text] [Related]
20. A toolkit for epithermal neutron beam characterisation in BNCT. Auterinen I; Serén T; Uusi-Simola J; Kosunen A; Savolainen S Radiat Prot Dosimetry; 2004; 110(1-4):587-93. PubMed ID: 15353713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]