BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25589571)

  • 21. Impact of Engineered Carbon Nanodiamonds on the Collapse Mechanism of Model Lung Surfactant Monolayers at the Air-Water Interface.
    Chakraborty A; Hertel A; Ditmars H; Dhar P
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of hydrophobic alkylated gold nanoparticles on the phase behavior of monolayers of DPPC and clinical lung surfactant.
    Tatur S; Badia A
    Langmuir; 2012 Jan; 28(1):628-39. PubMed ID: 22118426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase transitions in films of lung surfactant at the air-water interface.
    Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM
    Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes.
    Kadoya C; Lee BW; Ogami A; Oyabu T; Nishi K; Yamamoto M; Todoroki M; Morimoto Y; Tanaka I; Myojo T
    Nanotoxicology; 2016; 10(2):194-203. PubMed ID: 25950198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How does pulmonary surfactant reduce surface tension to very low values?
    Zuo YY; Possmayer F
    J Appl Physiol (1985); 2007 May; 102(5):1733-4. PubMed ID: 17303712
    [No Abstract]   [Full Text] [Related]  

  • 26. Effects of eicosane, a component of nanoparticles in diesel exhaust, on surface activity of pulmonary surfactant monolayers.
    Kanno S; Furuyama A; Hirano S
    Arch Toxicol; 2008 Nov; 82(11):841-50. PubMed ID: 18488198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
    Hu G; Jiao B; Shi X; Valle RP; Fan Q; Zuo YY
    ACS Nano; 2013 Dec; 7(12):10525-33. PubMed ID: 24266809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size dependent interactions of nanoparticles with lung surfactant model systems and the significant impact on surface potential.
    Ku T; Gill S; Löbenberg R; Azarmi S; Roa W; Prenner EJ
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2971-8. PubMed ID: 18681033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metastability of a supercompressed fluid monolayer.
    Smith EC; Crane JM; Laderas TG; Hall SB
    Biophys J; 2003 Nov; 85(5):3048-57. PubMed ID: 14581205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug Meets Monolayer: Understanding the Interactions of Sterol Drugs with Models of the Lung Surfactant Monolayer Using Molecular Dynamics Simulations.
    Hossain SI; Islam MZ; Saha SC; Deplazes E
    Methods Mol Biol; 2022; 2402():103-121. PubMed ID: 34854039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: I. Monolayers of pulmonary surfactant protein SP-B and phospholipids.
    Taneva S; Keough KM
    Biophys J; 1994 Apr; 66(4):1137-48. PubMed ID: 8038385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticle interaction with model lung surfactant monolayers.
    Harishchandra RK; Saleem M; Galla HJ
    J R Soc Interface; 2010 Feb; 7 Suppl 1(Suppl 1):S15-26. PubMed ID: 19846443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pulmonary surfactant protein SP-C causes packing rearrangements of dipalmitoylphosphatidylcholine in spread monolayers.
    Pérez-Gil J; Nag K; Taneva S; Keough KM
    Biophys J; 1992 Jul; 63(1):197-204. PubMed ID: 1420867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study.
    Xu Y; Deng L; Ren H; Zhang X; Huang F; Yue T
    Phys Chem Chem Phys; 2017 Jul; 19(27):17568-17576. PubMed ID: 28621369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholesterol modifies the properties of surface films of dipalmitoylphosphatidylcholine plus pulmonary surfactant-associated protein B or C spread or adsorbed at the air-water interface.
    Taneva S; Keough KM
    Biochemistry; 1997 Jan; 36(4):912-22. PubMed ID: 9020791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational Studies of Lipid-Wrapped Gold Nanoparticle Transport Through Model Lung Surfactant Monolayers.
    Hossain SI; Gandhi NS; Hughes ZE; Saha SC
    J Phys Chem B; 2021 Feb; 125(5):1392-1401. PubMed ID: 33529013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical surface potential of pulmonary surfactant.
    Leonenko Z; Rodenstein M; Döhner J; Eng LM; Amrein M
    Langmuir; 2006 Nov; 22(24):10135-9. PubMed ID: 17107011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential effects of surfactant protein A on regional organization of phospholipid monolayers containing surfactant protein B or C.
    Taneva SG; Keough KM
    Biophys J; 2000 Oct; 79(4):2010-23. PubMed ID: 11023905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural characterization of the monolayer-multilayer transition in a pulmonary surfactant model: IR studies of films transferred at continuously varying surface pressures.
    Mao G; Desai J; Flach CR; Mendelsohn R
    Langmuir; 2008 Mar; 24(5):2025-34. PubMed ID: 18198907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Folding of lipid monolayers containing lung surfactant proteins SP-B(1-25) and SP-C studied via coarse-grained molecular dynamics simulations.
    Duncan SL; Larson RG
    Biochim Biophys Acta; 2010 Sep; 1798(9):1632-50. PubMed ID: 20435014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.