These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 25589572)
1. Automated segmentation of the lamina cribrosa using Frangi's filter: a novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated structure in the eye. Campbell IC; Coudrillier B; Mensah J; Abel RL; Ethier CR J R Soc Interface; 2015 Mar; 12(104):20141009. PubMed ID: 25589572 [TBL] [Abstract][Full Text] [Related]
2. Modeling the biomechanics of the lamina cribrosa microstructure in the human eye. Karimi A; Rahmati SM; Grytz RG; Girkin CA; Downs JC Acta Biomater; 2021 Oct; 134():357-378. PubMed ID: 34245889 [TBL] [Abstract][Full Text] [Related]
3. Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa. Voorhees AP; Jan NJ; Sigal IA Acta Biomater; 2017 Aug; 58():278-290. PubMed ID: 28528864 [TBL] [Abstract][Full Text] [Related]
4. Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Roberts MD; Grau V; Grimm J; Reynaud J; Bellezza AJ; Burgoyne CF; Downs JC Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):681-90. PubMed ID: 18806292 [TBL] [Abstract][Full Text] [Related]
5. The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations. Midgett DE; Pease ME; Jefferys JL; Patel M; Franck C; Quigley HA; Nguyen TD Acta Biomater; 2017 Apr; 53():123-139. PubMed ID: 28108378 [TBL] [Abstract][Full Text] [Related]
6. Phase-Contrast Micro-Computed Tomography Measurements of the Intraocular Pressure-Induced Deformation of the Porcine Lamina Cribrosa. Coudrillier B; Geraldes DM; Vo NT; Atwood R; Reinhard C; Campbell IC; Raji Y; Albon J; Abel RL; Ethier CR IEEE Trans Med Imaging; 2016 Apr; 35(4):988-99. PubMed ID: 26642429 [TBL] [Abstract][Full Text] [Related]
7. Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Roberts MD; Liang Y; Sigal IA; Grimm J; Reynaud J; Bellezza A; Burgoyne CF; Downs JC Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):295-307. PubMed ID: 19696175 [TBL] [Abstract][Full Text] [Related]
8. Three-Dimensional Segmentation of the Ex-Vivo Anterior Lamina Cribrosa From Second-Harmonic Imaging Microscopy. Ram S; Danford F; Howerton S; Rodriguez JJ; Geest JPV IEEE Trans Biomed Eng; 2018 Jul; 65(7):1617-1629. PubMed ID: 28252388 [TBL] [Abstract][Full Text] [Related]
9. Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa. Coudrillier B; Campbell IC; Read AT; Geraldes DM; Vo NT; Feola A; Mulvihill J; Albon J; Abel RL; Ethier CR Invest Ophthalmol Vis Sci; 2016 May; 57(6):2666-77. PubMed ID: 27183053 [TBL] [Abstract][Full Text] [Related]
10. Finite element modeling of optic nerve head biomechanics. Sigal IA; Flanagan JG; Tertinegg I; Ethier CR Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4378-87. PubMed ID: 15557446 [TBL] [Abstract][Full Text] [Related]
11. 3D Histomorphometric Reconstruction and Quantification of the Optic Nerve Head Connective Tissues. Yang H; Reynaud J; Lockwood H; Williams G; Hardin C; Reyes L; Gardiner SK; Burgoyne CF Methods Mol Biol; 2018; 1695():207-267. PubMed ID: 29190029 [TBL] [Abstract][Full Text] [Related]
12. Lamina Cribrosa Microarchitecture in Monkey Early Experimental Glaucoma: Global Change. Reynaud J; Lockwood H; Gardiner SK; Williams G; Yang H; Burgoyne CF Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3451-69. PubMed ID: 27362781 [TBL] [Abstract][Full Text] [Related]
13. Individual astrocyte morphology in the collagenous lamina cribrosa revealed by multicolor DiOlistic labeling. Waxman S; Quinn M; Donahue C; Falo LD; Sun D; Jakobs TC; Sigal IA Exp Eye Res; 2023 May; 230():109458. PubMed ID: 36965593 [TBL] [Abstract][Full Text] [Related]
14. The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Grytz R; Meschke G; Jonas JB Biomech Model Mechanobiol; 2011 Jun; 10(3):371-82. PubMed ID: 20628781 [TBL] [Abstract][Full Text] [Related]
15. The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma. Wallace DM; O'Brien CJ Exp Eye Res; 2016 Jan; 142():102-9. PubMed ID: 26675406 [TBL] [Abstract][Full Text] [Related]
17. Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements. Wang X; Rumpel H; Lim WE; Baskaran M; Perera SA; Nongpiur ME; Aung T; Milea D; Girard MJ Invest Ophthalmol Vis Sci; 2016 May; 57(6):2452-62. PubMed ID: 27149695 [TBL] [Abstract][Full Text] [Related]
18. Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Sigal IA; Flanagan JG; Tertinegg I; Ethier CR Biomech Model Mechanobiol; 2009 Apr; 8(2):85-98. PubMed ID: 18309526 [TBL] [Abstract][Full Text] [Related]
19. [Research advances of optic nerve lamina cribrosa structure and its measurement analysis]. Tian T; Pan YZ Zhonghua Yan Ke Za Zhi; 2016 Dec; 52(12):952-956. PubMed ID: 27998461 [TBL] [Abstract][Full Text] [Related]
20. Clinical Implications of In Vivo Lamina Cribrosa Imaging in Glaucoma. Kim YW; Jeoung JW; Kim YK; Park KH J Glaucoma; 2017 Sep; 26(9):753-761. PubMed ID: 28787290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]