BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

754 related articles for article (PubMed ID: 25590134)

  • 1. Dynamic ocular surface and lacrimal gland changes induced in experimental murine dry eye.
    Xiao B; Wang Y; Reinach PS; Ren Y; Li J; Hua S; Lu H; Chen W
    PLoS One; 2015; 10(1):e0115333. PubMed ID: 25590134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preservation of tear film integrity and inhibition of corneal injury by dexamethasone in a rabbit model of lacrimal gland inflammation-induced dry eye.
    Nagelhout TJ; Gamache DA; Roberts L; Brady MT; Yanni JM
    J Ocul Pharmacol Ther; 2005 Apr; 21(2):139-48. PubMed ID: 15857280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lacrimal gland inflammatory cytokine gene expression in the botulinum toxin B-induced murine dry eye model.
    Park CY; Zhuang W; Lekhanont K; Zhang C; Cano M; Lee WS; Gehlbach PL; Chuck RS
    Mol Vis; 2007 Nov; 13():2222-32. PubMed ID: 18087241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A murine model of dry eye induced by an intelligently controlled environmental system.
    Chen W; Zhang X; Zhang J; Chen J; Wang S; Wang Q; Qu J
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1386-91. PubMed ID: 18385054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic effect of topical adiponectin in a mouse model of desiccating stress-induced dry eye.
    Li Z; Woo JM; Chung SW; Kwon MY; Choi JS; Oh HJ; Yoon KC
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):155-62. PubMed ID: 23211823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic efficacy of trehalose eye drops for treatment of murine dry eye induced by an intelligently controlled environmental system.
    Li J; Roubeix C; Wang Y; Shi S; Liu G; Baudouin C; Chen W
    Mol Vis; 2012; 18():317-29. PubMed ID: 22355243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflammatory cytokine expression on the ocular surface in the Botulium toxin B induced murine dry eye model.
    Zhu L; Shen J; Zhang C; Park CY; Kohanim S; Yew M; Parker JS; Chuck RS
    Mol Vis; 2009; 15():250-8. PubMed ID: 19190733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A new approach for better comprehension of diseases of the ocular surface].
    Baudouin C
    J Fr Ophtalmol; 2007 Mar; 30(3):239-46. PubMed ID: 17417148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of the Aqueous Extract of Bidens Pilosa L. on Androgen Deficiency Dry Eye in Rats.
    Zhang C; Li K; Yang Z; Wang Y; Si H
    Cell Physiol Biochem; 2016; 39(1):266-77. PubMed ID: 27337217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time course of ocular surface and lacrimal gland changes in a new scopolamine-induced dry eye model.
    Viau S; Maire MA; Pasquis B; Grégoire S; Fourgeux C; Acar N; Bretillon L; Creuzot-Garcher CP; Joffre C
    Graefes Arch Clin Exp Ophthalmol; 2008 Jun; 246(6):857-67. PubMed ID: 18357464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of osmoprotectants on prevention and treatment of murine dry eye.
    Chen W; Zhang X; Li J; Wang Y; Chen Q; Hou C; Garrett Q
    Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6287-97. PubMed ID: 23970467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutralization of ocular surface TNF-α reduces ocular surface and lacrimal gland inflammation induced by in vivo dry eye.
    Ji YW; Byun YJ; Choi W; Jeong E; Kim JS; Noh H; Kim ES; Song YJ; Park SK; Lee HK
    Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7557-66. PubMed ID: 24052636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and Investigation of Presumptive Murine Lacrimal Gland Stem Cells.
    Ackermann P; Hetz S; Dieckow J; Schicht M; Richter A; Kruse C; Schroeder IS; Jung M; Paulsen FP
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4350-63. PubMed ID: 26176872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship Between Dynamic Changes in Expression of IL-17/IL-23 in Lacrimal Gland and Ocular Surface Lesions in Ovariectomized Mice.
    Li M; Zhang X; Sun Z; Zhong L; Que L; Xia W; Yin Y; Wang Y
    Eye Contact Lens; 2018 Jan; 44(1):35-43. PubMed ID: 27341090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tear Production After Bilateral Main Lacrimal Gland Resection in Rabbits.
    Bhattacharya D; Ning Y; Zhao F; Stevenson W; Chen R; Zhang J; Wang M
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7774-83. PubMed ID: 26641554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration in cellular turnover and progenitor cell population in lacrimal glands from thrombospondin 1
    Shatos MA; Hodges RR; Morinaga M; McNay DE; Islam R; Bhattacharya S; Li D; Turpie B; Makarenkova HP; Masli S; Utheim TP; Dartt DA
    Exp Eye Res; 2016 Dec; 153():27-41. PubMed ID: 27697548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease.
    Solomon A; Dursun D; Liu Z; Xie Y; Macri A; Pflugfelder SC
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2283-92. PubMed ID: 11527941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Dry Eye Disease on the Kinetics of Lacrimal Gland Dendritic Cells as Visualized by Intravital Multi-Photon Microscopy.
    Ortiz G; Chao C; Jamali A; Seyed-Razavi Y; Kenyon B; Harris DL; Zoukhri D; Hamrah P
    Front Immunol; 2020; 11():1713. PubMed ID: 32903439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tear production and ocular surface changes in experimental dry eye after elimination of desiccating stress.
    Yoon KC; Ahn KY; Choi W; Li Z; Choi JS; Lee SH; Park SH
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7267-73. PubMed ID: 21849424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukin-1 receptor-1-deficient mice show attenuated production of ocular surface inflammatory cytokines in experimental dry eye.
    Narayanan S; Corrales RM; Farley W; McDermott AM; Pflugfelder SC
    Cornea; 2008 Aug; 27(7):811-7. PubMed ID: 18650668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.