These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

597 related articles for article (PubMed ID: 25590654)

  • 1. Catalytic metal ions and enzymatic processing of DNA and RNA.
    Palermo G; Cavalli A; Klein ML; Alfonso-Prieto M; Dal Peraro M; De Vivo M
    Acc Chem Res; 2015 Feb; 48(2):220-8. PubMed ID: 25590654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis.
    Nowotny M; Gaidamakov SA; Crouch RJ; Yang W
    Cell; 2005 Jul; 121(7):1005-16. PubMed ID: 15989951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA hydrolytic cleavage catalyzed by synthetic multinuclear metallonucleases.
    Liu C; Wang L
    Dalton Trans; 2009 Jan; (2):227-39. PubMed ID: 19089001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the effect of magnesium ion concentration on the catalytic activity of ribonuclease H through computation: does a third metal binding site modulate endonuclease catalysis?
    Ho MH; De Vivo M; Dal Peraro M; Klein ML
    J Am Chem Soc; 2010 Oct; 132(39):13702-12. PubMed ID: 20731347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis.
    Warnecke JM; Held R; Busch S; Hartmann RK
    J Mol Biol; 1999 Jul; 290(2):433-45. PubMed ID: 10390342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endonuclease active site plasticity allows DNA cleavage with diverse alkaline Earth and transition metal ions.
    Vasu K; Saravanan M; Nagaraja V
    ACS Chem Biol; 2011 Sep; 6(9):934-42. PubMed ID: 21736285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphodiester cleavage in ribonuclease H occurs via an associative two-metal-aided catalytic mechanism.
    De Vivo M; Dal Peraro M; Klein ML
    J Am Chem Soc; 2008 Aug; 130(33):10955-62. PubMed ID: 18662000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes.
    Genna V; Colombo M; De Vivo M; Marcia M
    Structure; 2018 Jan; 26(1):40-50.e2. PubMed ID: 29225080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-metal-ion mechanism for hammerhead-ribozyme catalysis.
    Leclerc F; Karplus M
    J Phys Chem B; 2006 Feb; 110(7):3395-409. PubMed ID: 16494354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One- and two-metal ion catalysis: global single-turnover kinetic analysis of the PvuII endonuclease mechanism.
    Xie F; Qureshi SH; Papadakos GA; Dupureur CM
    Biochemistry; 2008 Nov; 47(47):12540-50. PubMed ID: 18975919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites.
    Horton NC; Perona JJ
    Biochemistry; 2004 Jun; 43(22):6841-57. PubMed ID: 15170321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism.
    Gouge J; Rosario S; Romain F; Beguin P; Delarue M
    J Mol Biol; 2013 Nov; 425(22):4334-52. PubMed ID: 23856622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study on the catalytic mechanism of the retaining α-1,2-mannosyltransferase Kre2p/Mnt1p: the impact of different metal ions on catalysis.
    Bobovská A; Tvaroška I; Kóňa J
    Org Biomol Chem; 2014 Jun; 12(24):4201-10. PubMed ID: 24831692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruiting Mechanism and Functional Role of a Third Metal Ion in the Enzymatic Activity of 5' Structure-Specific Nucleases.
    Donati E; Genna V; De Vivo M
    J Am Chem Soc; 2020 Feb; 142(6):2823-2834. PubMed ID: 31939291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the transition states of phosphodiester bond cleavage: insights from heavy atom isotope effects.
    Cassano AG; Anderson VE; Harris ME
    Biopolymers; 2004 Jan; 73(1):110-29. PubMed ID: 14691944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Zn2+ binding and enzyme active site on the transition state for RNA 2'-O-transphosphorylation interpreted through kinetic isotope effects.
    Chen H; Piccirilli JA; Harris ME; York DM
    Biochim Biophys Acta; 2015 Nov; 1854(11):1795-800. PubMed ID: 25812974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication.
    Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA
    J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkali metals (Li, Na, and K) in methyl phosphodiester hydrolysis.
    Pinjari RV; Kaptan SS; Gejji SP
    Phys Chem Chem Phys; 2009 Jul; 11(26):5253-62. PubMed ID: 19551192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing phosphodiester-bond hydrolysis by an endonuclease.
    Molina R; Stella S; Redondo P; Gomez H; Marcaida MJ; Orozco M; Prieto J; Montoya G
    Nat Struct Mol Biol; 2015 Jan; 22(1):65-72. PubMed ID: 25486305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.