These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 25590696)
21. Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid. Rubentheren V; Ward TA; Chee CY; Nair P; Salami E; Fearday C Carbohydr Polym; 2016 Apr; 140():202-8. PubMed ID: 26876845 [TBL] [Abstract][Full Text] [Related]
22. Optimization of crosslinked poly(vinyl alcohol) nanocomposite films for mechanical properties. Rouhi M; Razavi SH; Mousavi SM Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1052-1063. PubMed ID: 27987659 [TBL] [Abstract][Full Text] [Related]
23. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films. Hakalahti M; Salminen A; Seppälä J; Tammelin T; Hänninen T Carbohydr Polym; 2015 Aug; 126():78-82. PubMed ID: 25933525 [TBL] [Abstract][Full Text] [Related]
24. Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Svagan AJ; Samir MA; Berglund LA Biomacromolecules; 2007 Aug; 8(8):2556-63. PubMed ID: 17655354 [TBL] [Abstract][Full Text] [Related]
25. Effects of pHs on properties of bio-nanocomposite based on tilapia skin gelatin and Cloisite Na+. Nagarajan M; Benjakul S; Prodpran T; Songtipya P Int J Biol Macromol; 2015 Apr; 75():388-97. PubMed ID: 25677177 [TBL] [Abstract][Full Text] [Related]
26. Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. Malho JM; Laaksonen P; Walther A; Ikkala O; Linder MB Biomacromolecules; 2012 Apr; 13(4):1093-9. PubMed ID: 22372697 [TBL] [Abstract][Full Text] [Related]
27. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Aulin C; Salazar-Alvarez G; Lindström T Nanoscale; 2012 Oct; 4(20):6622-8. PubMed ID: 22976562 [TBL] [Abstract][Full Text] [Related]
29. Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities. Das P; Schipmann S; Malho JM; Zhu B; Klemradt U; Walther A ACS Appl Mater Interfaces; 2013 May; 5(9):3738-47. PubMed ID: 23534374 [TBL] [Abstract][Full Text] [Related]
30. Self-Densification of Highly Mesoporous Wood Structure into a Strong and Transparent Film. Li K; Wang S; Chen H; Yang X; Berglund LA; Zhou Q Adv Mater; 2020 Oct; 32(42):e2003653. PubMed ID: 32881202 [TBL] [Abstract][Full Text] [Related]
31. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Peng XW; Ren JL; Zhong LX; Sun RC Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695 [TBL] [Abstract][Full Text] [Related]
32. Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid. Soheilmoghaddam M; Wahit MU Int J Biol Macromol; 2013 Jul; 58():133-9. PubMed ID: 23567285 [TBL] [Abstract][Full Text] [Related]
33. Wood inspired biobased nanocomposite films composed of xylans, lignosulfonates and cellulose nanofibers for active food packaging. Silva JM; Vilela C; Girão AV; Branco PC; Martins J; Freire MG; Silvestre AJD; Freire CSR Carbohydr Polym; 2024 Aug; 337():122112. PubMed ID: 38710545 [TBL] [Abstract][Full Text] [Related]
34. Towards biomimicking wood: fabricated free-standing films of Nanocellulose, Lignin, and a synthetic polycation. Pillai K; Navarro Arzate F; Zhang W; Renneckar S J Vis Exp; 2014 Jun; (88):. PubMed ID: 24961302 [TBL] [Abstract][Full Text] [Related]
35. Production of nanocellulose gels and films from invasive tree species. Almeida RO; Ramos A; Alves L; Potsi E; Ferreira PJT; Carvalho MGVS; Rasteiro MG; Gamelas JAF Int J Biol Macromol; 2021 Oct; 188():1003-1011. PubMed ID: 34371043 [TBL] [Abstract][Full Text] [Related]
36. Water-resistant hybrid cellulose nanofibril films prepared by charge reversal on gibbsite nanoclays. Sethi J; Wågberg L; Larsson PA Carbohydr Polym; 2022 Nov; 295():119867. PubMed ID: 35989010 [TBL] [Abstract][Full Text] [Related]
37. Layer-by-layer assembled PVA/Laponite multilayer free-standing films and their mechanical and thermal properties. Patro TU; Wagner HD Nanotechnology; 2011 Nov; 22(45):455706. PubMed ID: 22020248 [TBL] [Abstract][Full Text] [Related]
38. Design and synthesis of transparent and flexible nanofibrillated cellulose films to replace petroleum-based polymers. Lassoued M; Crispino F; Loranger E Carbohydr Polym; 2021 Feb; 254():117411. PubMed ID: 33357897 [TBL] [Abstract][Full Text] [Related]
39. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Cao X; Dong H; Li CM Biomacromolecules; 2007 Mar; 8(3):899-904. PubMed ID: 17315923 [TBL] [Abstract][Full Text] [Related]
40. Mechanically robust, flame-retardant phosphorylated cellulose films with tunable optical properties for light management in LEDs. Hou G; Zhao S; Li Y; Fang Z; Isogai A Carbohydr Polym; 2022 Dec; 298():120129. PubMed ID: 36241330 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]