These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 25590696)
41. Control of mechanical properties of chitin nanofiber film using glycerol without losing its characteristics. Ifuku S; Ikuta A; Izawa H; Morimoto M; Saimoto H Carbohydr Polym; 2014 Jan; 101():714-7. PubMed ID: 24299830 [TBL] [Abstract][Full Text] [Related]
42. Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites. Wang M; Olszewska A; Walther A; Malho JM; Schacher FH; Ruokolainen J; Ankerfors M; Laine J; Berglund LA; Osterberg M; Ikkala O Biomacromolecules; 2011 Jun; 12(6):2074-81. PubMed ID: 21517114 [TBL] [Abstract][Full Text] [Related]
43. Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Yousefi H; Nishino T; Faezipour M; Ebrahimi G; Shakeri A Biomacromolecules; 2011 Nov; 12(11):4080-5. PubMed ID: 21939209 [TBL] [Abstract][Full Text] [Related]
44. Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. Qazanfarzadeh Z; Kadivar M Int J Biol Macromol; 2016 Oct; 91():1134-40. PubMed ID: 27349890 [TBL] [Abstract][Full Text] [Related]
45. Bioinspired composites from cross-linked galactoglucomannan and microfibrillated cellulose: Thermal, mechanical and oxygen barrier properties. Oinonen P; Krawczyk H; Ek M; Henriksson G; Moriana R Carbohydr Polym; 2016 Jan; 136():146-53. PubMed ID: 26572340 [TBL] [Abstract][Full Text] [Related]
46. Effects of various plasticizers and nanoclays on the mechanical properties of red algae film. Jang SA; Shin YJ; Seo YB; Song KB J Food Sci; 2011 Apr; 76(3):N30-4. PubMed ID: 21535849 [TBL] [Abstract][Full Text] [Related]
47. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Spence KL; Venditti RA; Habibi Y; Rojas OJ; Pawlak JJ Bioresour Technol; 2010 Aug; 101(15):5961-8. PubMed ID: 20335025 [TBL] [Abstract][Full Text] [Related]
48. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Reddy JP; Rhim JW Carbohydr Polym; 2014 Sep; 110():480-8. PubMed ID: 24906782 [TBL] [Abstract][Full Text] [Related]
49. Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings. Heinämäki J; Halenius A; Paavo M; Alakurtti S; Pitkänen P; Pirttimaa M; Paaver U; Kirsimäe K; Kogermann K; Yliruusi J Int J Pharm; 2015 Jul; 489(1-2):91-9. PubMed ID: 25936623 [TBL] [Abstract][Full Text] [Related]
50. Preparation of transparent self-standing thin films made from acetylated euglenoid β-1,3-glucans. Shibakami M; Tsubouchi G; Sohma M; Hayashi M Carbohydr Polym; 2015 Nov; 133():421-8. PubMed ID: 26344298 [TBL] [Abstract][Full Text] [Related]
51. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. Hamedi MM; Hajian A; Fall AB; Håkansson K; Salajkova M; Lundell F; Wågberg L; Berglund LA ACS Nano; 2014 Mar; 8(3):2467-76. PubMed ID: 24512093 [TBL] [Abstract][Full Text] [Related]
52. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films. Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880 [TBL] [Abstract][Full Text] [Related]
53. Water-responsive mechanically adaptive nanocomposites based on styrene-butadiene rubber and cellulose nanocrystals--processing matters. Annamalai PK; Dagnon KL; Monemian S; Foster EJ; Rowan SJ; Weder C ACS Appl Mater Interfaces; 2014 Jan; 6(2):967-76. PubMed ID: 24354282 [TBL] [Abstract][Full Text] [Related]
54. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Benítez AJ; Torres-Rendon J; Poutanen M; Walther A Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557 [TBL] [Abstract][Full Text] [Related]
55. Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Alves JS; dos Reis KC; Menezes EG; Pereira FV; Pereira J Carbohydr Polym; 2015 Jan; 115():215-22. PubMed ID: 25439888 [TBL] [Abstract][Full Text] [Related]
56. Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Fukuzumi H; Saito T; Isogai A Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916 [TBL] [Abstract][Full Text] [Related]
57. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. Azeredo HM; Mattoso LH; Avena-Bustillos RJ; Filho GC; Munford ML; Wood D; McHugh TH J Food Sci; 2010; 75(1):N1-7. PubMed ID: 20492188 [TBL] [Abstract][Full Text] [Related]
58. Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. Fox JD; Capadona JR; Marasco PD; Rowan SJ J Am Chem Soc; 2013 Apr; 135(13):5167-74. PubMed ID: 23530595 [TBL] [Abstract][Full Text] [Related]
59. Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose. Cranston ED; Gray DG; Rutland MW Langmuir; 2010 Nov; 26(22):17190-7. PubMed ID: 20925376 [TBL] [Abstract][Full Text] [Related]
60. Carboxymethylation of alkali extracted xylan for preparation of bio-based packaging films. Alekhina M; Mikkonen KS; Alén R; Tenkanen M; Sixta H Carbohydr Polym; 2014 Jan; 100():89-96. PubMed ID: 24188842 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]