These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 25590825)

  • 41. Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3.
    Li CH; Wong YS; Wang HY; Tam NF
    J Environ Sci (China); 2015 Apr; 30():148-56. PubMed ID: 25872721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaerobic degradation of nonylphenol in soil.
    Chang BV; Chiang BW; Yuan SY
    J Environ Sci Health B; 2007 May; 42(4):387-92. PubMed ID: 17474018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anaerobic Benzene Mineralization by Nitrate-Reducing and Sulfate-Reducing Microbial Consortia Enriched From the Same Site: Comparison of Community Composition and Degradation Characteristics.
    Keller AH; Kleinsteuber S; Vogt C
    Microb Ecol; 2018 May; 75(4):941-953. PubMed ID: 29124312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microbial Succession of Anaerobic Chitin Degradation in Freshwater Sediments.
    Wörner S; Pester M
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31285190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of biochar in biodegradation of nonylphenol in sediment: Increasing microbial activity versus decreasing bioavailability.
    Cheng G; Sun M; Lu J; Ge X; Zhang H; Xu X; Lou L; Lin Q
    Sci Rep; 2017 Jul; 7(1):4726. PubMed ID: 28680053
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biodegradation of nonylphenol polyethoxylates under Fe(III)-reducing conditions.
    Lu J; Jin Q; He Y; Wu J
    Chemosphere; 2007 Oct; 69(7):1047-54. PubMed ID: 17553544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes.
    Zhang J; Yang Y; Zhao L; Li Y; Xie S; Liu Y
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):3291-302. PubMed ID: 25432677
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitrate addition promotes the nitrogen cycling processes under the co-contaminated tetrabromobisphenol A and copper condition in river sediment.
    Wang L; Li Y; Fan C; Wang P; Niu L; Wang L
    Environ Pollut; 2019 Aug; 251():659-667. PubMed ID: 31108299
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temporal trends of nonylphenol and bisphenol A contamination in the Pearl River Estuary and the adjacent South China Sea recorded by dated sedimentary cores.
    Peng X; Wang Z; Mai B; Chen F; Chen S; Tan J; Yu Y; Tang C; Li K; Zhang G; Yang C
    Sci Total Environ; 2007 Oct; 384(1-3):393-400. PubMed ID: 17618676
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Seasonal flux of nonylphenol in Han River, Korea.
    Li D; Kim M; Shim WJ; Yim UH; Oh JR; Kwon YJ
    Chemosphere; 2004 Jul; 56(1):1-6. PubMed ID: 15109873
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anaerobic degradation of nonylphenol in sludge.
    Chang BV; Chiang F; Yuan SY
    Chemosphere; 2005 Jun; 59(10):1415-20. PubMed ID: 15876384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Responses of Aromatic-Degrading Microbial Communities to Elevated Nitrate in Sediments.
    Xu M; He Z; Zhang Q; Liu J; Guo J; Sun G; Zhou J
    Environ Sci Technol; 2015 Oct; 49(20):12422-31. PubMed ID: 26390227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment.
    Tang Y; Li M; Xu D; Huang J; Sun J
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5980-5993. PubMed ID: 29236243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accelerated biodegradation of BPA in water-sediment microcosms with Bacillus sp. GZB and the associated bacterial community structure.
    Xiong J; An T; Li G; Peng P
    Chemosphere; 2017 Oct; 184():120-126. PubMed ID: 28586652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Occurrence of endocrine-disrupting phenols and estrogens in water and sediment of the Songhua river, northeastern China.
    Zhang Z; Ren N; Kannan K; Nan J; Liu L; Ma W; Qi H; Li Y
    Arch Environ Contam Toxicol; 2014 Apr; 66(3):361-9. PubMed ID: 24468970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Indigenous microbial communities in Albertan sediments are capable of anaerobic benzene biodegradation under methanogenic, sulfate-reducing, nitrate-reducing, and iron-reducing redox conditions.
    Lee K; Ulrich A
    Water Environ Res; 2021 Apr; 93(4):524-534. PubMed ID: 32892398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced anoxic bioremediation of PAHs-contaminated sediment.
    Lu XY; Li B; Zhang T; Fang HH
    Bioresour Technol; 2012 Jan; 104():51-8. PubMed ID: 22104099
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of the environmental fate of endocrine disrupting chemicals in rivers.
    Koumaki E; Mamais D; Noutsopoulos C
    Sci Total Environ; 2018 Jul; 628-629():947-958. PubMed ID: 30045583
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biodegradation of nonylphenol in river sediment.
    Yuan SY; Yu CH; Chang BV
    Environ Pollut; 2004; 127(3):425-30. PubMed ID: 14638303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.