These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25590825)

  • 81. Impacts of coal ash on methylmercury production and the methylating microbial community in anaerobic sediment slurries.
    Schwartz GE; Redfern LK; Ikuma K; Gunsch CK; Ruhl LS; Vengosh A; Hsu-Kim H
    Environ Sci Process Impacts; 2016 Nov; 18(11):1427-1439. PubMed ID: 27722355
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effects of hydrodynamic disturbances on biodegradation of tetrabromobisphenol A in water-sediment systems.
    Cheng H; Wang Y; Zhu T; Wang L; Xie Z; Hua Z; Jiang X
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31392-31400. PubMed ID: 31471855
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Anaerobic nonylphenol ethoxylate degradation coupled to nitrate reduction in a modified biodegradability batch test.
    Luppi LI; Hardmeier I; Babay PA; Itria RF; Erijman L
    Chemosphere; 2007 Aug; 68(11):2136-43. PubMed ID: 17367840
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Spatial-temporal distribution and potential ecological risk assessment of nonylphenol and octylphenol in riverine outlets of Pearl River Delta, China.
    Chen R; Yin P; Zhao L; Yu Q; Hong A; Duan S
    J Environ Sci (China); 2014 Nov; 26(11):2340-7. PubMed ID: 25458690
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments.
    Shi Y; Zwolinski MD; Schreiber ME; Bahr JM; Sewell GW; Hickey WJ
    Appl Environ Microbiol; 1999 May; 65(5):2143-50. PubMed ID: 10224013
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Distribution and dissipation pathways of nonylphenol polyethoxylates in the Yellow River: Site investigation and lab-scale studies.
    Wang L; Wu Y; Sun H; Xu J; Dai S
    Environ Int; 2006 Sep; 32(7):907-14. PubMed ID: 16842850
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype.
    Musat F; Widdel F
    Environ Microbiol; 2008 Jan; 10(1):10-9. PubMed ID: 18211263
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Degradation of tributyltin in microcosm using Mekong River sediment.
    Suehiro F; Kobayashi T; Nonaka L; Tuyen BC; Suzuki S
    Microb Ecol; 2006 Jul; 52(1):19-25. PubMed ID: 16767521
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Behavior of di(2-ethylhexyl) phthalate discharged from domestic waste water into aquatic environment.
    Yuwatini E; Hata N; Taguchi S
    J Environ Monit; 2006 Jan; 8(1):191-6. PubMed ID: 16395478
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effect of 2,4-dinitrotoluene on the anaerobic bacterial community in marine sediment.
    Yang H; Zhao JS; Hawari J
    J Appl Microbiol; 2009 Dec; 107(6):1799-808. PubMed ID: 19486208
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions.
    Siegert M; Cichocka D; Herrmann S; Gründger F; Feisthauer S; Richnow HH; Springael D; Krüger M
    FEMS Microbiol Lett; 2011 Feb; 315(1):6-16. PubMed ID: 21133990
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The nonylphenol biodegradation study by estuary sediment-derived fungus Penicillium simplicissimum.
    Zhang Y; Liu Y; Dong H; Li X; Zhang D
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15122-32. PubMed ID: 27094271
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Biodegradation of hexadecane using sediments from rivers and lagoons of the Southern Gulf of Mexico.
    García-Cruz NU; Sánchez-Avila JI; Valdés-Lozano D; Gold-Bouchot G; Aguirre-Macedo L
    Mar Pollut Bull; 2018 Mar; 128():202-207. PubMed ID: 29571364
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Determination of biodegradation rates for surfactants and a fatty alcohol in aerobic sediment using a simplified test system.
    McDonough K; Itrich N; Schwab E; Federle T
    Environ Toxicol Chem; 2016 Sep; 35(9):2199-208. PubMed ID: 26896387
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Toxicity of xenobiotics during sulfate, iron, and nitrate reduction in primary sewage sludge suspensions.
    Elsgaard L
    Chemosphere; 2010 May; 79(10):1003-9. PubMed ID: 20378150
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Degradation of phenanthrene in river sediment under nitrate-reducing conditions.
    Chang BV; Chang JS; Yuan SY
    Bull Environ Contam Toxicol; 2001 Dec; 67(6):898-905. PubMed ID: 11692206
    [No Abstract]   [Full Text] [Related]  

  • 97. Anaerobic degradation of p-xylene in sediment-free sulfate-reducing enrichment culture.
    Nakagawa T; Sato S; Fukui M
    Biodegradation; 2008 Nov; 19(6):909-13. PubMed ID: 18409067
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biodegradation of tetrachlorobisphenol-A in river sediment and the microbial community changes.
    Yuan SY; Li HT; Huang HW; Chang BV
    J Environ Sci Health B; 2010 Jul; 45(5):360-5. PubMed ID: 20512725
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Bisphenol A biodegradation differs between mudflat and mangrove forest sediments.
    Tong T; Li R; Chen J; Ke Y; Xie S
    Chemosphere; 2021 May; 270():128664. PubMed ID: 33757276
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Biodegradation of [(14)C] ring-labeled nonylphenol ethoxylate.
    Naylor CG; Staples CA; Klecka GM; Williams JB; Varineau PT; Cady C
    Arch Environ Contam Toxicol; 2006 Jul; 51(1):11-20. PubMed ID: 16485172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.