These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25591075)

  • 1. Simple method for fluorescence DNA in situ hybridization to squashed chromosomes.
    Larracuente AM; Ferree PM
    J Vis Exp; 2015 Jan; (95):52288. PubMed ID: 25591075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent in situ hybridization with transposable element probes to mitotic chromosomal heterochromatin of Drosophila.
    Dimitri P
    Methods Mol Biol; 2004; 260():29-39. PubMed ID: 15020800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].
    Bogomolov AG; Karamysheva TV; Rubtsov NB
    Mol Biol (Mosk); 2014; 48(6):881-90. PubMed ID: 25845229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Selective chromosome painting using in situ hybridization].
    Pérez Losada A; Woessner S; Solé F; Caballín MR; Florensa L
    Sangre (Barc); 1993 Apr; 38(2):151-4. PubMed ID: 8516730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple non-toxic ethylene carbonate fluorescence in situ hybridization (EC-FISH) for simultaneous detection of repetitive DNA sequences and fluorescent bands in plants.
    Golczyk H
    Protoplasma; 2019 May; 256(3):873-880. PubMed ID: 30656455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent in situ hybridization (FISH) of mitotic chromosomes from Drosophila larval brain.
    Pimpinelli S; Bonaccorsi S; Fanti L; Gatti M
    Cold Spring Harb Protoc; 2010 Mar; 2010(3):pdb.prot5391. PubMed ID: 20194460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of transposable elements in Drosophila salivary gland polytene chromosomes by in situ hybridization.
    Biémont C; Monti-Dedieu L; Lemeunier F
    Methods Mol Biol; 2004; 260():21-8. PubMed ID: 15020799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cot-1 banding of human chromosomes using fluorescence in situ hybridization with Cy3 labeling.
    Wang Y; Minoshima S; Shimizu N
    Jpn J Hum Genet; 1995 Sep; 40(3):243-52. PubMed ID: 8527798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-enzymatic, low temperature fluorescence in situ hybridization of human chromosomes with a repetitive alpha-satellite probe.
    Durm M; Haar FM; Hausmann M; Ludwig H; Cremer C
    Z Naturforsch C J Biosci; 1997; 52(1-2):82-8. PubMed ID: 9090071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ hybridization to somatic chromosomes in Drosophila.
    Dernburg AF
    Cold Spring Harb Protoc; 2011 Sep; 2011(9):. PubMed ID: 21880819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of honeybee (Apis mellifera L.) chromosomes using repetitive DNA probes and fluorescence in situ hybridization.
    Beye M; Moritz RF
    J Hered; 1995; 86(2):145-50. PubMed ID: 7751599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-nucleotide sequence discrimination in situ using padlock probes.
    Nilsson M; Landegren U; Antson DO
    Curr Protoc Cytom; 2001 May; Chapter 8():Unit 8.8. PubMed ID: 18770746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei.
    van Dekken H; Arkesteijn GJ; Visser JW; Bauman JG
    Cytometry; 1990; 11(1):153-64. PubMed ID: 2307056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direction of DNA sequences within chromatids determined using strand-specific FISH.
    Meyne J; Goodwin EH
    Chromosome Res; 1995 Sep; 3(6):375-8. PubMed ID: 7551553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and non-toxic in situ hybridization without blocking of repetitive sequences.
    Matthiesen SH; Hansen CM
    PLoS One; 2012; 7(7):e40675. PubMed ID: 22911704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization.
    She C; Liu J; Diao Y; Hu Z; Song Y
    J Genet Genomics; 2007 May; 34(5):437-48. PubMed ID: 17560530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simplified combination of DNA probe preparation and fluorescence in situ hybridization.
    Celeda D; Bettag U; Cremer C
    Z Naturforsch C J Biosci; 1992; 47(9-10):739-47. PubMed ID: 1449591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simplified protocol for fluorescence in situ hybridization with repetitive DNA probes and its use in clinical cytogenetics.
    Bartsch O; Schwinger E
    Clin Genet; 1991 Jul; 40(1):47-56. PubMed ID: 1884517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis.
    Boyle S; Rodesch MJ; Halvensleben HA; Jeddeloh JA; Bickmore WA
    Chromosome Res; 2011 Oct; 19(7):901-9. PubMed ID: 22006037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.