These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25591075)

  • 21. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis.
    Boyle S; Rodesch MJ; Halvensleben HA; Jeddeloh JA; Bickmore WA
    Chromosome Res; 2011 Oct; 19(7):901-9. PubMed ID: 22006037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Non-radioactive in situ hybridization with chromosome-specific probes].
    Bryndorf TE; Christensen B; Philip J
    Ugeskr Laeger; 1992 May; 154(21):1487-91. PubMed ID: 1598719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation and Quantification of Telomere and Repetitive Sequences Using Fluorescence In Situ Hybridization (FISH) with PNA Probes in Caenorhabditis elegans.
    Seo B; Lee J
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27583462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential destabilization of repetitive sequence hybrids in fluorescence in situ hybridization.
    Hozier JC; Scalzi JM; Clase AC; Davis LM; Liechty MC
    Cytogenet Cell Genet; 1998; 83(1-2):60-3. PubMed ID: 9925929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA probes for FISH analysis of C-negative regions in human chromosomes.
    Morozkin ES; Karamysheva TV; Laktionov PP; Vlassov VV; Rubtsov NB
    Methods Mol Biol; 2013; 1039():233-42. PubMed ID: 24026700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization of specific repetitive DNA sequences in individual rice chromosomes.
    Wu HK; Chung MC; Wu TY; Ning CN; Wu R
    Chromosoma; 1991 Jun; 100(5):330-8. PubMed ID: 1860377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods.
    Cabral-de-Mello DC; Marec F
    Mol Genet Genomics; 2021 May; 296(3):513-526. PubMed ID: 33625598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High resolution microscopic mapping of DNA using multi-color fluorescent hybridization.
    Windle B; Silvas E; Parra I
    Electrophoresis; 1995 Feb; 16(2):273-8. PubMed ID: 7774568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Affinity LNA-DNA Mixmer Probes for Detection of Chromosome-Specific Polymorphisms of 5S rDNA Repeats in Arabidopsis thaliana.
    Simon L; Probst AV
    Methods Mol Biol; 2018; 1675():481-491. PubMed ID: 29052209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of repetitive DNA in chromosomes by flow cytometry.
    Brind'Amour J; Lansdorp PM
    Nat Methods; 2011 Jun; 8(6):484-6. PubMed ID: 21532581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Horseradish peroxidase-labeled oligonucleotides and fluorescent tyramides for rapid detection of chromosome-specific repeat sequences.
    van Gijlswijk RP; Wiegant J; Vervenne R; Lasan R; Tanke HJ; Raap AK
    Cytogenet Cell Genet; 1996; 75(4):258-62. PubMed ID: 9067437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymerase chain reaction-based suppression of repetitive sequences in whole chromosome painting probes for FISH.
    Dugan LC; Pattee MS; Williams J; Eklund M; Sorensen K; Bedford JS; Christian AT
    Chromosome Res; 2005; 13(1):27-32. PubMed ID: 15791409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Holocentric chromosome evolution in kissing bugs (Hemiptera: Reduviidae: Triatominae): diversification of repeated sequences.
    Pita S; Lorite P; Vela J; Mora P; Palomeque T; Thi KP; Panzera F
    Parasit Vectors; 2017 Sep; 10(1):410. PubMed ID: 28874168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of repetitive DNA sequences in chromosomes of five opisthorchid species (Trematoda, Opisthorchiidae).
    Zadesenets KS; Karamysheva TV; Katokhin AV; Mordvinov VA; Rubtsov NB
    Parasitol Int; 2012 Mar; 61(1):84-6. PubMed ID: 21791251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Possible origin of a B chromosome deduced from its DNA composition using double FISH technique.
    López-León MD; Neves N; Schwarzacher T; Heslop-Harrison JS; Hewitt GM; Camacho JP
    Chromosome Res; 1994 Mar; 2(2):87-92. PubMed ID: 8032677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The distribution of two highly repeated DNA sequences within Drosophila melanogaster chromosomes.
    Steffensen DM; Appels R; Peacock WJ
    Chromosoma; 1981; 82(4):525-41. PubMed ID: 6790249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microdissection and chromosome painting of X and B chromosomes in the grasshopper Eyprepocnemis plorans.
    Teruel M; Cabrero J; Perfectti F; Acosta MJ; Sánchez A; Camacho JP
    Cytogenet Genome Res; 2009; 125(4):286-91. PubMed ID: 19864892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromosome Painting by GISH and Multicolor FISH.
    Xu SS; Liu Z; Zhang Q; Niu Z; Jan CC; Cai X
    Methods Mol Biol; 2016; 1429():7-21. PubMed ID: 27511163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosome-specific DNA repeat probes.
    Baumgartner A; Weier JF; Weier HU
    J Histochem Cytochem; 2006 Dec; 54(12):1363-70. PubMed ID: 16924124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanding probe repertoire and improving reproducibility in human genomic hybridization.
    Dorman SN; Shirley BC; Knoll JH; Rogan PK
    Nucleic Acids Res; 2013 Apr; 41(7):e81. PubMed ID: 23376933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.