These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25591081)

  • 1. FIM imaging and FIMtrack: two new tools allowing high-throughput and cost effective locomotion analysis.
    Risse B; Otto N; Berh D; Jiang X; Klämbt C
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25591081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FIM, a novel FTIR-based imaging method for high throughput locomotion analysis.
    Risse B; Thomas S; Otto N; Löpmeier T; Valkov D; Jiang X; Klämbt C
    PLoS One; 2013; 8(1):e53963. PubMed ID: 23349775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FIMTrack: An open source tracking and locomotion analysis software for small animals.
    Risse B; Berh D; Otto N; Klämbt C; Jiang X
    PLoS Comput Biol; 2017 May; 13(5):e1005530. PubMed ID: 28493862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying subtle locomotion phenotypes of Drosophila larvae using internal structures based on FIM images.
    Risse B; Berh D; Otto N; Jiang X; Klämbt C
    Comput Biol Med; 2015 Aug; 63():269-76. PubMed ID: 25280919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FIM$^{2c\;}$: Multicolor, Multipurpose Imaging System to Manipulate and Analyze Animal Behavior.
    Risse B; Otto N; Berh D; Xiaoyi Jiang ; Kiel M; Klambt C
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):610-620. PubMed ID: 28113210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput Analysis of Locomotor Behavior in the Drosophila Island Assay.
    Eidhof I; Fenckova M; Elurbe DM; van de Warrenburg B; Castells Nobau A; Schenck A
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions among Drosophila larvae before and during collision.
    Otto N; Risse B; Berh D; Bittern J; Jiang X; Klämbt C
    Sci Rep; 2016 Aug; 6():31564. PubMed ID: 27511760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Term Observation of Locomotion of Drosophila Larvae Facilitates Feasibility of Food-Choice Assays.
    Bittern J; Praetz M; Baldenius M; Klämbt C
    Adv Biol (Weinh); 2022 Apr; 6(4):e2100938. PubMed ID: 34365739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical and low cost whole-organism motility assay: A step-by-step protocol.
    Preston S; Jabbar A; Nowell C; Joachim A; Ruttkowski B; Cardno T; Hofmann A; Gasser RB
    Mol Cell Probes; 2016 Feb; 30(1):13-7. PubMed ID: 26365227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An FIM-Based Long-Term In-Vial Monitoring System for Drosophila Larvae.
    Berh D; Risse B; Michels T; Otto N; Xiaoyi Jiang ; Klambt C
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1862-1874. PubMed ID: 28113288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nemo: a computational tool for analyzing nematode locomotion.
    Tsibidis GD; Tavernarakis N
    BMC Neurosci; 2007 Oct; 8():86. PubMed ID: 17941975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperactive locomotion in a
    Kashima R; Redmond PL; Ghatpande P; Roy S; Kornberg TB; Hanke T; Knapp S; Lagna G; Hata A
    Sci Signal; 2017 May; 10(477):. PubMed ID: 28465421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of octopamine and tyramine in Drosophila larval locomotion.
    Selcho M; Pauls D; El Jundi B; Stocker RF; Thum AS
    J Comp Neurol; 2012 Nov; 520(16):3764-85. PubMed ID: 22627970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated quantification of locomotion, social interaction, and mate preference in Drosophila mutants.
    Iyengar A; Imoehl J; Ueda A; Nirschl J; Wu CF
    J Neurogenet; 2012 Sep; 26(3-4):306-16. PubMed ID: 23106154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neuromechanical model for Drosophila larval crawling based on physical measurements.
    Sun X; Liu Y; Liu C; Mayumi K; Ito K; Nose A; Kohsaka H
    BMC Biol; 2022 Jun; 20(1):130. PubMed ID: 35701821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronous multi-segmental activity between metachronal waves controls locomotion speed in
    Liu Y; Hasegawa E; Nose A; Zwart MF; Kohsaka H
    Elife; 2023 Aug; 12():. PubMed ID: 37551094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An RJMCMC-Based Method for Tracking and Resolving Collisions of Drosophila Larvae.
    Michels T; Berh D; Jiang X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):465-474. PubMed ID: 29990198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open source tracking and analysis of adult Drosophila locomotion in Buridan's paradigm with and without visual targets.
    Colomb J; Reiter L; Blaszkiewicz J; Wessnitzer J; Brembs B
    PLoS One; 2012; 7(8):e42247. PubMed ID: 22912692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Simple Method for Quantifying Larval Locomotion in Drosophila melanogaster.
    Lin J; Mele S; Piper MDW; Johnson TK
    Methods Mol Biol; 2024; 2746():101-108. PubMed ID: 38070083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image enhancement for tracking the translucent larvae of Drosophila melanogaster.
    Khurana S; Li WK; Atkinson NS
    PLoS One; 2010 Dec; 5(12):e15259. PubMed ID: 21209929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.