These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25591081)

  • 21. High-throughput Screening in Larval Zebrafish Identifies Novel Potent Sedative-hypnotics.
    Yang X; Jounaidi Y; Dai JB; Marte-Oquendo F; Halpin ES; Brown LE; Trilles R; Xu W; Daigle R; Yu B; Schaus SE; Porco JA; Forman SA
    Anesthesiology; 2018 Sep; 129(3):459-476. PubMed ID: 29894316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of wrMTrck to monitor Drosophila larval locomotor activity.
    Brooks DS; Vishal K; Kawakami J; Bouyain S; Geisbrecht ER
    J Insect Physiol; 2016; 93-94():11-17. PubMed ID: 27430166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring the effect of pathogenic nematodes on locomotion of Drosophila larvae.
    Kunc M; Arefin B; Hyrsl P; Theopold U
    Fly (Austin); 2017 Jul; 11(3):208-217. PubMed ID: 28631995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An automated system for quantitative analysis of Drosophila larval locomotion.
    Aleman-Meza B; Jung SK; Zhong W
    BMC Dev Biol; 2015 Feb; 15():11. PubMed ID: 25881248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Track-a-worm, an open-source system for quantitative assessment of C. elegans locomotory and bending behavior.
    Wang SJ; Wang ZW
    PLoS One; 2013; 8(7):e69653. PubMed ID: 23922769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population.
    Winbush A; Gruner M; Hennig GW; van der Linden AM
    J Neurosci Methods; 2015 Jul; 249():66-74. PubMed ID: 25911068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes.
    Jakubowski BR; Longoria RA; Shubeita GT
    Fly (Austin); 2012; 6(4):303-8. PubMed ID: 22992470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CellProfiler and KNIME: open source tools for high content screening.
    Stöter M; Niederlein A; Barsacchi R; Meyenhofer F; Brandl H; Bickle M
    Methods Mol Biol; 2013; 986():105-22. PubMed ID: 23436409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae.
    Kohsaka H; Takasu E; Morimoto T; Nose A
    Curr Biol; 2014 Nov; 24(22):2632-42. PubMed ID: 25438948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural Circuits Underlying Fly Larval Locomotion.
    Kohsaka H; Guertin PA; Nose A
    Curr Pharm Des; 2017; 23(12):1722-1733. PubMed ID: 27928962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural circuits driving larval locomotion in Drosophila.
    Clark MQ; Zarin AA; Carreira-Rosario A; Doe CQ
    Neural Dev; 2018 Apr; 13(1):6. PubMed ID: 29673388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GUItars: a GUI tool for analysis of high-throughput RNA interference screening data.
    Goktug AN; Ong SS; Chen T
    PLoS One; 2012; 7(11):e49386. PubMed ID: 23185323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.
    Itakura Y; Kohsaka H; Ohyama T; Zlatic M; Pulver SR; Nose A
    PLoS One; 2015; 10(9):e0136660. PubMed ID: 26335437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using Linear Agarose Channels to Study Drosophila Larval Crawling Behavior.
    Sun X; Heckscher ES
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27929468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1.
    Ainsley JA; Pettus JM; Bosenko D; Gerstein CE; Zinkevich N; Anderson MG; Adams CM; Welsh MJ; Johnson WA
    Curr Biol; 2003 Sep; 13(17):1557-63. PubMed ID: 12956960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Proprioceptive System Dynamics in Behaving Drosophila Larvae Using High-Speed Volumetric Microscopy.
    Vaadia RD; Li W; Voleti V; Singhania A; Hillman EMC; Grueber WB
    Curr Biol; 2019 Mar; 29(6):935-944.e4. PubMed ID: 30853438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin.
    Inada K; Kohsaka H; Takasu E; Matsunaga T; Nose A
    PLoS One; 2011; 6(12):e29019. PubMed ID: 22216159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal mechanisms regulating locomotion in adult Drosophila.
    Gowda SBM; Banu A; Hussain S; Mohammad F
    J Neurosci Res; 2024 Apr; 102(4):e25332. PubMed ID: 38646942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A suite of MATLAB-based computational tools for automated analysis of COPAS Biosort data.
    Morton E; Lamitina T
    Biotechniques; 2010 Jun; 48(6):xxv-xxx. PubMed ID: 20569218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatically tracking feeding behavior in populations of foraging
    Bonnard E; Liu J; Zjacic N; Alvarez L; Scholz M
    Elife; 2022 Sep; 11():. PubMed ID: 36083280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.