These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 25591331)

  • 1. Communication: generalization of Koopmans' theorem to optical transitions in the Hubbard model of graphene nanodots.
    Sheng W; Luo K; Zhou A
    J Chem Phys; 2015 Jan; 142(2):021102. PubMed ID: 25591331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Koopmans' theorem in the ROHF method: canonical form for the Hartree-Fock Hamiltonian.
    Plakhutin BN; Gorelik EV; Breslavskaya NN
    J Chem Phys; 2006 Nov; 125(20):204110. PubMed ID: 17144693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Koopmans' theorem in the restricted open-shell Hartree-Fock method. 1. A variational approach.
    Plakhutin BN; Davidson ER
    J Phys Chem A; 2009 Nov; 113(45):12386-95. PubMed ID: 19459641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations of the optical spectra of hydrocarbon radical cations based on Koopmans' theorem.
    Nelsen SF; Weaver MN; Yamazaki D; Komatsu K; Rathore R; Bally T
    J Phys Chem A; 2007 Mar; 111(9):1667-76. PubMed ID: 17288409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Koopmans' theorem for large molecular systems within density functional theory.
    Luo J; Xue ZQ; Liu WM; Wu JL; Yang ZQ
    J Phys Chem A; 2006 Nov; 110(43):12005-9. PubMed ID: 17064189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal blueshift of the absorption edge in graphene nanodots.
    Sheng W
    J Chem Phys; 2018 Jun; 148(21):214301. PubMed ID: 29884030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies.
    Baerends EJ; Gritsenko OV; van Meer R
    Phys Chem Chem Phys; 2013 Oct; 15(39):16408-25. PubMed ID: 24002107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles redox energy estimates under the condition of satisfying the general form of Koopmans' theorem: An atomistic study of aqueous iron.
    Shirani J; Farraj SA; Yuan S; Bevan KH
    J Chem Phys; 2022 Nov; 157(18):184110. PubMed ID: 36379797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity of the Extended Koopmans' Theorem.
    Ernzerhof M
    J Chem Theory Comput; 2009 Apr; 5(4):793-7. PubMed ID: 26609585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitonic and quasiparticle gaps in Si nanocrystals.
    Delerue C; Lannoo M; Allan G
    Phys Rev Lett; 2000 Mar; 84(11):2457-60. PubMed ID: 11018909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The extended Koopmans' theorem for orbital-optimized methods: accurate computation of ionization potentials.
    Bozkaya U
    J Chem Phys; 2013 Oct; 139(15):154105. PubMed ID: 24160498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can model Hamiltonians describe the electron-electron interaction in π-conjugated systems? PAH and graphene.
    Chiappe G; Louis E; San-Fabián E; Vergés JA
    J Phys Condens Matter; 2015 Nov; 27(46):463001. PubMed ID: 26501495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene.
    Shang J; Yu T; Lin J; Gurzadyan GG
    ACS Nano; 2011 Apr; 5(4):3278-83. PubMed ID: 21391596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-range corrected functionals satisfy Koopmans' theorem: calculation of correlation and relaxation energies.
    Kar R; Song JW; Hirao K
    J Comput Chem; 2013 Apr; 34(11):958-64. PubMed ID: 23299544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling of excitons in graphene nanodots.
    Sheng W; Wang H
    Phys Chem Chem Phys; 2016 Oct; 18(40):28365-28369. PubMed ID: 27711650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hubbard excitons in two-dimensional nanomaterials.
    Huang L; Xie J; Sheng W
    J Phys Condens Matter; 2019 Jul; 31(27):275302. PubMed ID: 30952139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening in Orbital-Density-Dependent Functionals.
    Colonna N; Nguyen NL; Ferretti A; Marzari N
    J Chem Theory Comput; 2018 May; 14(5):2549-2557. PubMed ID: 29494151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark excitons and tunable optical gap in graphene nanodots.
    Zhang Y; Sheng W; Li Y
    Phys Chem Chem Phys; 2017 Aug; 19(34):23131-23137. PubMed ID: 28820198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of Koopmans' theorem for density functional theory binding energies.
    Bellafont NP; Illas F; Bagus PS
    Phys Chem Chem Phys; 2015 Feb; 17(6):4015-9. PubMed ID: 25566985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.