These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25591366)

  • 1. Multi-scale modelling of uranyl chloride solutions.
    Nguyen TN; Duvail M; Villard A; Molina JJ; Guilbaud P; Dufrêche JF
    J Chem Phys; 2015 Jan; 142(2):024501. PubMed ID: 25591366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural correspondence between uranyl chloride complexes in solution and their stability constants.
    Soderholm L; Skanthakumar S; Wilson RE
    J Phys Chem A; 2011 May; 115(19):4959-67. PubMed ID: 21526745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, kinetics, and thermodynamics of the aqueous uranyl(VI) cation.
    Kerisit S; Liu C
    J Phys Chem A; 2013 Aug; 117(30):6421-32. PubMed ID: 23815284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A first principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous ionic solutions: D2O in hydration shells of Cl(-) ions.
    Mallik BS; Semparithi A; Chandra A
    J Chem Phys; 2008 Nov; 129(19):194512. PubMed ID: 19026071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics studies of concentrated binary aqueous solutions of lanthanide salts: structures and exchange dynamics.
    Duvail M; Ruas A; Venault L; Moisy P; Guilbaud P
    Inorg Chem; 2010 Jan; 49(2):519-30. PubMed ID: 20025265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab Initio Molecular Dynamics Study of a Highly Concentrated LiCl Aqueous Solution.
    Petit L; Vuilleumier R; Maldivi P; Adamo C
    J Chem Theory Comput; 2008 Jul; 4(7):1040-8. PubMed ID: 26636357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hydration on coordination properties of uranyl(VI) complexes. A first-principles molecular dynamics study.
    Bühl M; Kabrede H; Diss R; Wipff G
    J Am Chem Soc; 2006 May; 128(19):6357-68. PubMed ID: 16683800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion association in AlCl3 aqueous solutions from constrained first-principles molecular dynamics.
    Cauët E; Bogatko SA; Bylaska EJ; Weare JH
    Inorg Chem; 2012 Oct; 51(20):10856-69. PubMed ID: 23035987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydrated ion model of [UO
    Pérez-Conesa S; Torrico F; Martínez JM; Pappalardo RR; Sánchez Marcos E
    J Chem Phys; 2016 Dec; 145(22):224502. PubMed ID: 27984897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation of the curium(III) ion in aqueous solution: a combined study by quantum chemistry and molecular dynamics simulation.
    Yang T; Bursten BE
    Inorg Chem; 2006 Jul; 45(14):5291-301. PubMed ID: 16813391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Salt on the Uranyl Binding with Carbonate and Calcium Ions in Aqueous Solutions.
    Li B; Zhou J; Priest C; Jiang DE
    J Phys Chem B; 2017 Aug; 121(34):8171-8178. PubMed ID: 28749658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the Structure of Concentrated NaOH Aqueous Solutions by Combining Molecular Dynamics and Wide-Angle X-ray Scattering.
    Coste A; Poulesquen A; Diat O; Dufrêche JF; Duvail M
    J Phys Chem B; 2019 Jun; 123(24):5121-5130. PubMed ID: 31141363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration and ion pair formation in aqueous Y(3+)-salt solutions.
    Rudolph WW; Irmer G
    Dalton Trans; 2015 Nov; 44(42):18492-505. PubMed ID: 26442624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic studies of aqueous and CCl4 solutions of 15-crown-5 at 298.15 K: an application of McMillan-Mayer and Kirkwood-Buff theories of solutions.
    Dagade DH; Shetake PK; Patil KJ
    J Phys Chem B; 2007 Jul; 111(26):7610-9. PubMed ID: 17547449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.
    Dagade DH; Madkar KR; Shinde SP; Barge SS
    J Phys Chem B; 2013 Jan; 117(4):1031-43. PubMed ID: 23293839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas phase uranyl activation: formation of a uranium nitrosyl complex from uranyl azide.
    Gong Y; de Jong WA; Gibson JK
    J Am Chem Soc; 2015 May; 137(18):5911-5. PubMed ID: 25906363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A density functional study of uranyl monocarboxylates.
    Schlosser F; Krüger S; Rösch N
    Inorg Chem; 2006 Feb; 45(4):1480-90. PubMed ID: 16471959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic studies of molecular interactions in aqueous alpha-cyclodextrin solutions: application of McMillan-Mayer and Kirkwood-Buff theories.
    Terdale SS; Dagade DH; Patil KJ
    J Phys Chem B; 2006 Sep; 110(37):18583-93. PubMed ID: 16970487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uranyl(VI) nitrate salts: modeling thermodynamic properties using the binding mean spherical approximation theory and determination of "fictive" binary data.
    Ruas A; Bernard O; Caniffi B; Simonin JP; Turq P; Blum L; Moisy P
    J Phys Chem B; 2006 Feb; 110(7):3435-43. PubMed ID: 16494358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydration and ion pair formation in common aqueous La(III) salt solutions--a Raman scattering and DFT study.
    Rudolph WW; Irmer G
    Dalton Trans; 2015 Jan; 44(1):295-305. PubMed ID: 25379866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.