BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25591377)

  • 1. Time-resolved X-ray diffraction and Raman studies of the phase transition mechanisms of methane hydrate.
    Hirai H; Kadobayashi H; Hirao N; Ohishi Y; Ohtake M; Yamamoto Y; Nakano S
    J Chem Phys; 2015 Jan; 142(2):024707. PubMed ID: 25591377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes and preferential cage occupancy of ethane hydrate and methane-ethane mixed gas hydrate under very high pressure.
    Hirai H; Takahara N; Kawamura T; Yamamoto Y; Yagi T
    J Chem Phys; 2008 Dec; 129(22):224503. PubMed ID: 19071924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of CO₂ hydrate between 0.7 and 1.0 GPa.
    Tulk CA; Machida S; Klug DD; Lu H; Guthrie M; Molaison JJ
    J Chem Phys; 2014 Nov; 141(17):174503. PubMed ID: 25381527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evolution of methane hydrate under pressures up to 134 GPa.
    Kadobayashi H; Hirai H; Ohfuji H; Ohtake M; Muraoka M; Yoshida S; Yamamoto Y
    J Chem Phys; 2020 May; 152(19):194308. PubMed ID: 33687263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase changes of filled ice Ih methane hydrate under low temperature and high pressure.
    Tanaka T; Hirai H; Matsuoka T; Ohishi Y; Yagi T; Ohtake M; Yamamoto Y; Nakano S; Irifune T
    J Chem Phys; 2013 Sep; 139(10):104701. PubMed ID: 24050356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic observation and in-situ Raman scattering studies on high-pressure phase transformations of Kr hydrate.
    Sasaki S; Hori S; Kume T; Shimizu H
    J Phys Chem B; 2006 May; 110(20):9838-42. PubMed ID: 16706436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes of filled ice Ic structure for hydrogen hydrate under high pressure.
    Machida S; Hirai H; Kawamura T; Yamamoto Y; Yagi T
    J Chem Phys; 2008 Dec; 129(22):224505. PubMed ID: 19071926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ Raman and X-ray diffraction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa.
    Kadobayashi H; Hirai H; Ohfuji H; Ohtake M; Yamamoto Y
    J Chem Phys; 2018 Apr; 148(16):164503. PubMed ID: 29716198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition from cage clathrate to filled ice: the structure of methane hydrate III.
    Loveday JS; Nelmes RJ; Guthrie M; Klug DD; Tse JS
    Phys Rev Lett; 2001 Nov; 87(21):215501. PubMed ID: 11736347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of methane filled hexagonal ice stable up to 150 GPa.
    Schaack S; Ranieri U; Depondt P; Gaal R; Kuhs WF; Gillet P; Finocchi F; Bove LE
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16204-16209. PubMed ID: 31332007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.
    Murshed MM; Kuhs WF
    J Phys Chem B; 2009 Apr; 113(15):5172-80. PubMed ID: 19354304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a mechanism of transformation of clathrate hydrate structures I to II or H.
    Yoshioki S
    J Mol Graph Model; 2012 Jul; 37():39-48. PubMed ID: 22627268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and phase transitions of methane hydrates under dynamic loadings: compression rate dependent kinetics.
    Chen JY; Yoo CS
    J Chem Phys; 2012 Mar; 136(11):114513. PubMed ID: 22443783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High pressure study of Li-doped fullerides, Li(x)C60 (x = 4,12), by x-ray diffraction and Raman spectroscopy.
    Pischedda V; Yao M; Debord R; Gabarino G; San-Miguel A
    J Phys Condens Matter; 2014 Sep; 26(36):365302. PubMed ID: 25134418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A note on transformation between clathrate hydrate structures I and II.
    Yoshioki S
    J Mol Graph Model; 2010 Sep; 29(2):290-4. PubMed ID: 20646941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifreezes act as catalysts for methane hydrate formation from ice.
    McLaurin G; Shin K; Alavi S; Ripmeester JA
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10429-33. PubMed ID: 25132532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase changes of CO2 hydrate under high pressure and low temperature.
    Hirai H; Komatsu K; Honda M; Kawamura T; Yamamoto Y; Yagi T
    J Chem Phys; 2010 Sep; 133(12):124511. PubMed ID: 20886954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced CH₄ Recovery Induced via Structural Transformation in the CH₄/CO₂ Replacement That Occurs in sH Hydrates.
    Lee Y; Kim Y; Seo Y
    Environ Sci Technol; 2015 Jul; 49(14):8899-906. PubMed ID: 26107753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.
    Murshed MM; Schmidt BC; Kuhs WF
    J Phys Chem A; 2010 Jan; 114(1):247-55. PubMed ID: 19863115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical microscopy and in situ Raman scattering of single crystalline ethylene hydrate and binary methane-ethylene hydrate at high pressures.
    Shimizu H; Tada N; Ikawa R; Kume T; Sasaki S
    J Phys Chem B; 2005 Dec; 109(47):22285-9. PubMed ID: 16853901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.