BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25591807)

  • 1. Evaluating the sensitivity of the optimization of acquisition geometry to the choice of reconstruction algorithm in digital breast tomosynthesis through a simulation study.
    Zeng R; Park S; Bakic P; Myers KJ
    Phys Med Biol; 2015 Feb; 60(3):1259-88. PubMed ID: 25591807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms.
    Zeng R; Badano A; Myers KJ
    Phys Med Biol; 2017 Apr; 62(7):2598-2611. PubMed ID: 28151728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.
    Van de Sompel D; Brady SM; Boone J
    Med Image Anal; 2011 Feb; 15(1):53-70. PubMed ID: 20713313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the acquisition geometry in digital tomosynthesis of the breast.
    Sechopoulos I; Ghetti C
    Med Phys; 2009 Apr; 36(4):1199-207. PubMed ID: 19472626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image artifacts in digital breast tomosynthesis: investigation of the effects of system geometry and reconstruction parameters using a linear system approach.
    Hu YH; Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5242-52. PubMed ID: 19175083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An iterative reconstruction algorithm for digital breast tomosynthesis imaging using real data at three radiation doses.
    Polat A; Yildirim I
    J Xray Sci Technol; 2018; 26(3):347-360. PubMed ID: 29504549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital breast tomosynthesis: Image acquisition principles and artifacts.
    Sujlana PS; Mahesh M; Vedantham S; Harvey SC; Mullen LA; Woods RW
    Clin Imaging; 2019; 55():188-195. PubMed ID: 30236642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array.
    Hu Z; Chen Z; Zhou C; Hong X; Chen J; Zhang Q; Jiang C; Ge Y; Yang Y; Liu X; Zheng H; Li Z; Liang D
    J Xray Sci Technol; 2020; 28(6):1157-1169. PubMed ID: 32925159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective-diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis reconstruction.
    Lu Y; Chan HP; Wei J; Hadjiiski LM
    Med Phys; 2010 Nov; 37(11):6003-14. PubMed ID: 21158312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional linear system analysis for breast tomosynthesis.
    Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5219-32. PubMed ID: 19175081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
    Seyyedi S; Cengiz K; Kamasak M; Yildirim I
    Comput Math Methods Med; 2013; 2013():250689. PubMed ID: 24371468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.
    Kim H; Lee T; Hong J; Sabir S; Lee JR; Choi YW; Kim HH; Chae EY; Cho S
    Med Phys; 2017 Feb; 44(2):417-425. PubMed ID: 28032909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer simulation platform for the optimization of a breast tomosynthesis system.
    Zhou J; Zhao B; Zhao W
    Med Phys; 2007 Mar; 34(3):1098-109. PubMed ID: 17441255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-attenuation artifact reduction in breast tomosynthesis using a novel reconstruction algorithm.
    Dustler M; Wicklein J; Förnvik H; Boita J; Bakic P; Lång K
    Eur J Radiol; 2019 Jul; 116():21-26. PubMed ID: 31153567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry.
    Bliznakova K; Kolitsi Z; Speller RD; Horrocks JA; Tromba G; Pallikarakis N
    Med Phys; 2010 Apr; 37(4):1893-903. PubMed ID: 20443511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.