These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25591962)

  • 21. Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars.
    Cheng L; Sun X; Zhao X; Wang L; Yu J; Pan G; Li B; Yang H; Zhang Y; Cui W
    Biomaterials; 2016 Mar; 83():169-81. PubMed ID: 26774564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning.
    Chung S; Ingle NP; Montero GA; Kim SH; King MW
    Acta Biomater; 2010 Jun; 6(6):1958-67. PubMed ID: 20004258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospun collagen-poly(L-lactic acid-co-ε-caprolactone) membranes for cartilage tissue engineering.
    He X; Fu W; Feng B; Wang H; Liu Z; Yin M; Wang W; Zheng J
    Regen Med; 2013 Jul; 8(4):425-36. PubMed ID: 23826697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.
    Xu Y; Dong S; Zhou Q; Mo X; Song L; Hou T; Wu J; Li S; Li Y; Li P; Gan Y; Xu J
    Biomaterials; 2014 Mar; 35(9):2760-72. PubMed ID: 24411676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering.
    Prabhakaran MP; Nair AS; Kai D; Ramakrishna S
    Biopolymers; 2012 Jul; 97(7):529-38. PubMed ID: 22328272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross-linked collagen-chondroitin sulfate-hyaluronic acid imitating extracellular matrix as scaffold for dermal tissue engineering.
    Wang W; Zhang M; Lu W; Zhang X; Ma D; Rong X; Yu C; Jin Y
    Tissue Eng Part C Methods; 2010 Apr; 16(2):269-79. PubMed ID: 19530938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold.
    Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS
    J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential.
    Kwon IK; Kidoaki S; Matsuda T
    Biomaterials; 2005 Jun; 26(18):3929-39. PubMed ID: 15626440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An in-situ forming skin substitute improves healing outcome in a hypertrophic scar model.
    Hartwell R; Poormasjedi-Meibod MS; Chavez-Munoz C; Jalili RB; Hossenini-Tabatabaei A; Ghahary A
    Tissue Eng Part A; 2015 Mar; 21(5-6):1085-94. PubMed ID: 25412924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering.
    Huot S; Rohman G; Riffault M; Pinzano A; Grossin L; Migonney V
    Biomed Mater Eng; 2013; 23(4):281-8. PubMed ID: 23798649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
    Chen CH; Shyu VB; Chen JP; Lee MY
    Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstruction of abdominal wall with scaffolds of electrospun poly (l-lactide-co caprolactone) and porcine fibrinogen: An experimental study in the canine.
    Li S; Su L; Li X; Yang L; Yang M; Zong H; Zong Q; Tang J; He H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110644. PubMed ID: 32204076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications.
    Jithendra P; Rajam AM; Kalaivani T; Mandal AB; Rose C
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7291-8. PubMed ID: 23838342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical tension stimulates the transdifferentiation of fibroblasts into myofibroblasts in human burn scars.
    Junker JP; Kratz C; Tollbäck A; Kratz G
    Burns; 2008 Nov; 34(7):942-6. PubMed ID: 18472340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.
    Kim SH; Jung Y; Kim SH
    Tissue Eng Part C Methods; 2013 Mar; 19(3):181-8. PubMed ID: 22834918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibroblast-loaded cholecyst-derived scaffold induces faster healing of full thickness burn wound in rabbit.
    Revi D; Geetha C; Thekkuveettil A; Anilkumar TV
    J Biomater Appl; 2016 Feb; 30(7):1036-48. PubMed ID: 26589297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface modified poly(L-lactide-co-epsilon-caprolactone) microspheres as scaffold for tissue engineering.
    Garkhal K; Verma S; Tikoo K; Kumar N
    J Biomed Mater Res A; 2007 Sep; 82(3):747-56. PubMed ID: 17326230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents.
    Guo R; Xu S; Ma L; Huang A; Gao C
    Biomaterials; 2011 Feb; 32(4):1019-31. PubMed ID: 21071076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.