These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25591972)

  • 1. Fluorescent molecules as transceiver nanoantennas: the first practical and high-rate information transfer over a nanoscale communication channel based on FRET.
    Kuscu M; Kiraz A; Akan OB
    Sci Rep; 2015 Jan; 5():7831. PubMed ID: 25591972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocommunication via FRET With DyLight Dyes Using Multiple Donors and Acceptors.
    Solarczyk K; Wojcik K; Kulakowski P
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):275-83. PubMed ID: 27071184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET-based nanoscale point-to-point and broadcast communications with multi-exciton transmission and channel routing.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):315-26. PubMed ID: 25095261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):255-66. PubMed ID: 25014963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Characterization of RGB LED Transceiver in Low-Complexity LED-to-LED Link.
    Galal M; Ng WP; Binns R; Abd El Aziz A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale communication with molecular arrays in nanonetworks.
    Atakan B; Galmes S; Akan OB
    IEEE Trans Nanobioscience; 2012 Jun; 11(2):149-60. PubMed ID: 22287254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Demonstration of 3 × 3 MIMO LED-to-LED Communication Using RGB Colors.
    Jung H; Kim SM
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation Scheme Analysis for Low-Power Leadless Pacemaker Synchronization Based on Conductive Intracardiac Communication.
    Ryser A; Schmid T; Bereuter L; Burger J; Reichlin T; Niederhauser T; Haeberlin A
    IEEE Trans Biomed Circuits Syst; 2022 Jun; 16(3):419-429. PubMed ID: 35622811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates.
    Ghenuche P; Mivelle M; de Torres J; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Wenger J
    Nano Lett; 2015 Sep; 15(9):6193-201. PubMed ID: 26237534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and Dual Threshold Algorithm for Diffusion-Based Molecular MIMO Communications.
    Liu Q; Lu Z; Yang K
    IEEE Trans Nanobioscience; 2021 Oct; 20(4):416-425. PubMed ID: 33945482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.
    Rafique Z; Seet BC; Al-Anbuky A
    Sensors (Basel); 2013 May; 13(6):7033-52. PubMed ID: 23760087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin nanoscale compaction in live cells visualized by acceptor-to-donor ratio corrected Förster resonance energy transfer between DNA dyes.
    Pelicci S; Diaspro A; Lanzanò L
    J Biophotonics; 2019 Dec; 12(12):e201900164. PubMed ID: 31365191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the limits of single-molecule FRET resolution in TIRF microscopy.
    Holden SJ; Uphoff S; Hohlbein J; Yadin D; Le Reste L; Britton OJ; Kapanidis AN
    Biophys J; 2010 Nov; 99(9):3102-11. PubMed ID: 21044609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Nanoantennas Enable Forbidden Förster Dipole-Dipole Energy Transfer and Enhance the FRET Efficiency.
    de Torres J; Mivelle M; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Margeat E; Wenger J
    Nano Lett; 2016 Oct; 16(10):6222-6230. PubMed ID: 27623052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Non-Coherent Signal Detection Techniques for Mobile Molecular Communication.
    Yu W; Liu F; Yan H; Lin L
    IEEE Trans Nanobioscience; 2023 Apr; 22(2):356-364. PubMed ID: 35877803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
    Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T
    ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal/noise analysis of FRET-based sensors.
    Woehler A; Wlodarczyk J; Neher E
    Biophys J; 2010 Oct; 99(7):2344-54. PubMed ID: 20923670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Analytical Model for Molecular Propagation in Nanocommunication via Filaments Using Relay-Enabled Nodes.
    Darchinimaragheh K; Alfa AS
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):870-81. PubMed ID: 26529773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanonetworks in Biomedical Applications.
    Marzo JL; Jornet JM; Pierobon M
    Curr Drug Targets; 2019; 20(8):800-807. PubMed ID: 30648507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTR-FRET: Efficient background reduction technology in time-resolved förster resonance energy transfer assays.
    Syrjänpää M; Vuorinen E; Kulmala S; Wang Q; Härmä H; Kopra K
    Anal Chim Acta; 2019 Dec; 1092():93-101. PubMed ID: 31708038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.