These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 25591994)
1. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Sureshbabu A; Syed MA; Boddupalli CS; Dhodapkar MV; Homer RJ; Minoo P; Bhandari V Respir Res; 2015 Jan; 16(1):4. PubMed ID: 25591994 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice. Sureshbabu A; Syed M; Das P; Janér C; Pryhuber G; Rahman A; Andersson S; Homer RJ; Bhandari V Am J Respir Cell Mol Biol; 2016 Nov; 55(5):722-735. PubMed ID: 27374190 [TBL] [Abstract][Full Text] [Related]
4. Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia. Rath P; Nardiello C; Surate Solaligue DE; Agius R; Mižíková I; Hühn S; Mayer K; Vadász I; Herold S; Runkel F; Seeger W; Morty RE Pediatr Res; 2017 May; 81(5):795-805. PubMed ID: 28141790 [TBL] [Abstract][Full Text] [Related]
5. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice. Eldredge LC; Treuting PM; Manicone AM; Ziegler SF; Parks WC; McGuire JK Am J Respir Cell Mol Biol; 2016 Feb; 54(2):273-83. PubMed ID: 26192732 [TBL] [Abstract][Full Text] [Related]
6. Elevated circulating TGFβ1 during acute liver failure activates TGFβR2 on cortical neurons and exacerbates neuroinflammation and hepatic encephalopathy in mice. McMillin M; Grant S; Frampton G; Petrescu AD; Williams E; Jefferson B; Thomas A; Brahmaroutu A; DeMorrow S J Neuroinflammation; 2019 Apr; 16(1):69. PubMed ID: 30940161 [TBL] [Abstract][Full Text] [Related]
7. Chronic lung injury in the neonatal rat: up-regulation of TGFβ1 and nitration of IGF-R1 by peroxynitrite as likely contributors to impaired alveologenesis. Belcastro R; Lopez L; Li J; Masood A; Tanswell AK Free Radic Biol Med; 2015 Mar; 80():1-11. PubMed ID: 25514442 [TBL] [Abstract][Full Text] [Related]
8. Impaired Autophagic Activity Contributes to the Pathogenesis of Bronchopulmonary Dysplasia. Evidence from Murine and Baboon Models. Zhang L; Soni S; Hekimoglu E; Berkelhamer S; Çataltepe S Am J Respir Cell Mol Biol; 2020 Sep; 63(3):338-348. PubMed ID: 32374619 [TBL] [Abstract][Full Text] [Related]
9. Interleukin-33 (IL-33) Increases Hyperoxia-Induced Bronchopulmonary Dysplasia in Newborn Mice by Regulation of Inflammatory Mediators. Tang X Med Sci Monit; 2018 Sep; 24():6717-6728. PubMed ID: 30244258 [TBL] [Abstract][Full Text] [Related]
10. PI3K-AKT Signaling via Nrf2 Protects against Hyperoxia-Induced Acute Lung Injury, but Promotes Inflammation Post-Injury Independent of Nrf2 in Mice. Reddy NM; Potteti HR; Vegiraju S; Chen HJ; Tamatam CM; Reddy SP PLoS One; 2015; 10(6):e0129676. PubMed ID: 26075390 [TBL] [Abstract][Full Text] [Related]
11. TREM-1 Attenuates RIPK3-mediated Necroptosis in Hyperoxia-induced Lung Injury in Neonatal Mice. Syed MA; Shah D; Das P; Andersson S; Pryhuber G; Bhandari V Am J Respir Cell Mol Biol; 2019 Mar; 60(3):308-322. PubMed ID: 30281332 [TBL] [Abstract][Full Text] [Related]
12. miR‑21‑5p ameliorates hyperoxic acute lung injury and decreases apoptosis of AEC II cells via PTEN/AKT signaling in rats. Qin S; Wang H; Liu G; Mei H; Chen M Mol Med Rep; 2019 Dec; 20(6):4953-4962. PubMed ID: 31702805 [TBL] [Abstract][Full Text] [Related]
13. Absence of TNF-α enhances inflammatory response in the newborn lung undergoing mechanical ventilation. Ehrhardt H; Pritzke T; Oak P; Kossert M; Biebach L; Förster K; Koschlig M; Alvira CM; Hilgendorff A Am J Physiol Lung Cell Mol Physiol; 2016 May; 310(10):L909-18. PubMed ID: 27016588 [TBL] [Abstract][Full Text] [Related]
14. LRP1-Dependent BMPER Signaling Regulates Lipopolysaccharide-Induced Vascular Inflammation. Lockyer P; Mao H; Fan Q; Li L; Yu-Lee LY; Eissa NT; Patterson C; Xie L; Pi X Arterioscler Thromb Vasc Biol; 2017 Aug; 37(8):1524-1535. PubMed ID: 28596374 [TBL] [Abstract][Full Text] [Related]
15. Autophagy inducers restore impaired autophagy, reduce apoptosis, and attenuate blunted alveolarization in hyperoxia-exposed newborn rats. Zhang D; Wu L; Du Y; Zhu Y; Pan B; Xue X; Fu J Pediatr Pulmonol; 2018 Aug; 53(8):1053-1066. PubMed ID: 29893049 [TBL] [Abstract][Full Text] [Related]
16. SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure. Shen CH; Lin JY; Lu CY; Yang SS; Peng CK; Huang KL BMC Pulm Med; 2021 Feb; 21(1):58. PubMed ID: 33588817 [TBL] [Abstract][Full Text] [Related]
17. Targeting glycogen synthase kinase-3β to prevent hyperoxia-induced lung injury in neonatal rats. Hummler SC; Rong M; Chen S; Hehre D; Alapati D; Wu S Am J Respir Cell Mol Biol; 2013 May; 48(5):578-88. PubMed ID: 23328640 [TBL] [Abstract][Full Text] [Related]
18. Deletion of P2X7 attenuates hyperoxia-induced acute lung injury via inflammasome suppression. Galam L; Rajan A; Failla A; Soundararajan R; Lockey RF; Kolliputi N Am J Physiol Lung Cell Mol Physiol; 2016 Mar; 310(6):L572-81. PubMed ID: 26747786 [TBL] [Abstract][Full Text] [Related]
19. Targeting p16 Zysman M; Baptista BR; Essari LA; Taghizadeh S; Thibault de Ménonville C; Giffard C; Issa A; Franco-Montoya ML; Breau M; Souktani R; Aissat A; Caeymaex L; Lizé M; Van Nhieu JT; Jung C; Rottier R; Cruzeiro MD; Adnot S; Epaud R; Chabot F; Lanone S; Boczkowski J; Boyer L Am J Respir Crit Care Med; 2020 Oct; 202(8):1088-1104. PubMed ID: 32628504 [No Abstract] [Full Text] [Related]
20. Inhibition of microRNA-29a alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice via upregulation of GAB1. Hu Y; Xie L; Yu J; Fu H; Zhou D; Liu H Mol Med; 2019 Dec; 26(1):3. PubMed ID: 31892308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]