These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2559202)

  • 1. Activation and conductance properties of ryanodine-sensitive calcium channels from brain microsomal membranes incorporated into planar lipid bilayers.
    Ashley RH
    J Membr Biol; 1989 Oct; 111(2):179-89. PubMed ID: 2559202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of the ryanodine-sensitive release channels that underlie caffeine-induced Ca2+ mobilization from intracellular stores in mammalian sympathetic neurons.
    Hernández-Cruz A; Díaz-Muñoz M; Gómez-Chavarín M; Cañedo-Merino R; Protti DA; Escobar AL; Sierralta J; Suárez-Isla BA
    Eur J Neurosci; 1995 Aug; 7(8):1684-99. PubMed ID: 7582123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of a voltage-activated calcium conducting cation channel from brain microsomes.
    Martin C; Ashley RH
    Cell Calcium; 1993 Jun; 14(6):427-38. PubMed ID: 7689423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of the ryanodine receptor present in the sarcoplasmic reticulum from lobster skeletal muscle.
    Olivares E; Arispe N; Rojas E
    Membr Biochem; 1993; 10(4):221-35. PubMed ID: 7516463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IP3 receptor purified from liver plasma membrane is an (1,4,5)IP3 activated and (1,3,4,5)IP4 inhibited calcium permeable ion channel.
    Mayrleitner M; Schäfer R; Fleischer S
    Cell Calcium; 1995 Feb; 17(2):141-53. PubMed ID: 7736563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conducting and voltage-dependent behaviors of the native and purified SR Ca2+-release channels from the canine diaphragm.
    Picher M; Decrouy A; Proteau S; Rousseau E
    Biochim Biophys Acta; 1997 Sep; 1328(2):243-60. PubMed ID: 9315621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12.
    Ahern GP; Junankar PR; Dulhunty AF
    Biophys J; 1997 Jan; 72(1):146-62. PubMed ID: 8994600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of R56865 on cardiac sarcoplasmic reticulum function and its role as an antagonist of digoxin at the sarcoplasmic reticulum calcium release channel.
    McGarry SJ; Scheufler E; Williams AJ
    Br J Pharmacol; 1995 Jan; 114(1):231-7. PubMed ID: 7712023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties.
    Percival AL; Williams AJ; Kenyon JL; Grinsell MM; Airey JA; Sutko JL
    Biophys J; 1994 Nov; 67(5):1834-50. PubMed ID: 7532019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Ca2+ release from heterogeneous Ca2+ stores in sarcoplasmic reticulum isolated from arterial and gastric smooth muscle.
    Stout MA; Raeymaekers L; De Smedt H; Casteels R
    Can J Physiol Pharmacol; 2002 Jun; 80(6):588-603. PubMed ID: 12117308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agonist-activated, ryanodine-sensitive, IP3-insensitive Ca2+ release channels in longitudinal muscle of intestine.
    Kuemmerle JF; Murthy KS; Makhlouf GM
    Am J Physiol; 1994 May; 266(5 Pt 1):C1421-31. PubMed ID: 7515567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionally heterogenous ryanodine receptors in avian cerebellum.
    Sierralta J; Fill M; Suárez-Isla BA
    J Biol Chem; 1996 Jul; 271(29):17028-34. PubMed ID: 8663321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ channels from brain microsomal membranes reconstituted in patch-clamped bilayers.
    Vassilev PM; Kanazirska MP; Tien HT
    Biochim Biophys Acta; 1987 Feb; 897(2):324-30. PubMed ID: 2434130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inositol (1,4,5)-trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum membranes.
    Suárez-Isla BA; Irribarra V; Oberhauser A; Larralde L; Bull R; Hidalgo C; Jaimovich E
    Biophys J; 1988 Oct; 54(4):737-41. PubMed ID: 2852037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional sensitivity of the native skeletal Ca(2+)-release channel to divalent cations and the Mg-ATP complex.
    Rousseau E; Pinkos J; Savaria D
    Can J Physiol Pharmacol; 1992 Mar; 70(3):394-402. PubMed ID: 1318162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High molecular weight proteins purified from cardiac junctional sarcoplasmic reticulum vesicles are ryanodine-sensitive calcium channels.
    Rardon DP; Cefali DC; Mitchell RD; Seiler SM; Jones LR
    Circ Res; 1989 Apr; 64(4):779-89. PubMed ID: 2539270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution and regulation of cation-selective channels from cardiac sarcoplasmic reticulum.
    Rousseau E; Chabot H; Beaudry C; Muller B
    Mol Cell Biochem; 1992 Sep; 114(1-2):109-17. PubMed ID: 1281262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological characterization of the specific binding of [3H]ryanodine to rat brain microsomal membranes.
    Zimanyi I; Pessah IN
    Brain Res; 1991 Oct; 561(2):181-91. PubMed ID: 1666327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium.
    Bezprozvanny I; Ehrlich BE
    J Gen Physiol; 1994 Nov; 104(5):821-56. PubMed ID: 7876825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional expression of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum in COS-1 cells.
    Chen SR; Vaughan DM; Airey JA; Coronado R; MacLennan DH
    Biochemistry; 1993 Apr; 32(14):3743-53. PubMed ID: 8385488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.