BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25592050)

  • 1. In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment.
    Ivanov DP; Parker TL; Walker DA; Alexander C; Ashford MB; Gellert PR; Garnett MC
    J Biotechnol; 2015 Jul; 205():3-13. PubMed ID: 25592050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.
    Ivanov DP; Parker TL; Walker DA; Alexander C; Ashford MB; Gellert PR; Garnett MC
    PLoS One; 2014; 9(8):e103817. PubMed ID: 25119185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D spheroid models of paediatric SHH medulloblastoma mimic tumour biology, drug response and metastatic dissemination.
    Roper SJ; Linke F; Scotting PJ; Coyle B
    Sci Rep; 2021 Feb; 11(1):4259. PubMed ID: 33608621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of the spheroid model complexity on drug response.
    Hoffmann OI; Ilmberger C; Magosch S; Joka M; Jauch KW; Mayer B
    J Biotechnol; 2015 Jul; 205():14-23. PubMed ID: 25746901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery.
    Meier-Hubberten JC; Sanderson MP
    Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Generation of Three-Dimensional Head and Neck Cancer Models for Drug Discovery in 384-Well Ultra-Low Attachment Microplates.
    Close DA; Camarco DP; Shan F; Kochanek SJ; Johnston PA
    Methods Mol Biol; 2018; 1683():355-369. PubMed ID: 29082502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ReN VM spheroids in matrix: A neural progenitor three-dimensional in vitro model reveals DYRK1A inhibitors as potential regulators of radio-sensitivity.
    Wan X; Wu X; Hill MA; Ebner DV
    Biochem Biophys Res Commun; 2020 Oct; 531(4):535-542. PubMed ID: 32807492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge?
    Friedrich J; Ebner R; Kunz-Schughart LA
    Int J Radiat Biol; 2007; 83(11-12):849-71. PubMed ID: 18058370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system.
    Karlsson H; Fryknäs M; Larsson R; Nygren P
    Exp Cell Res; 2012 Aug; 318(13):1577-85. PubMed ID: 22487097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermo-responsive polymer aided spheroid culture in cryogel based platform for high throughput drug screening.
    Sarkar J; Kumar A
    Analyst; 2016 Apr; 141(8):2553-67. PubMed ID: 27027476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing.
    Gong X; Lin C; Cheng J; Su J; Zhao H; Liu T; Wen X; Zhao P
    PLoS One; 2015; 10(6):e0130348. PubMed ID: 26090664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model.
    Kunz-Schughart LA; Freyer JP; Hofstaedter F; Ebner R
    J Biomol Screen; 2004 Jun; 9(4):273-85. PubMed ID: 15191644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities.
    Lan SF; Starly B
    Toxicol Appl Pharmacol; 2011 Oct; 256(1):62-72. PubMed ID: 21839104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional perfused tumour spheroid model for anti-cancer drug screening.
    Wan X; Li Z; Ye H; Cui Z
    Biotechnol Lett; 2016 Aug; 38(8):1389-95. PubMed ID: 27167883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an in vitro tumor spheroid culture model amenable to high-throughput testing of potential anticancer nanotherapeutics.
    Solomon MA; Lemera J; D'Souza GG
    J Liposome Res; 2016 Sep; 26(3):246-60. PubMed ID: 26780923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening.
    Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH
    Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug screening.
    Wu Q; Wei X; Pan Y; Zou Y; Hu N; Wang P
    Biomed Microdevices; 2018 Sep; 20(4):82. PubMed ID: 30220069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 1536-Well 3D Viability Assay to Assess the Cytotoxic Effect of Drugs on Spheroids.
    Madoux F; Tanner A; Vessels M; Willetts L; Hou S; Scampavia L; Spicer TP
    SLAS Discov; 2017 Jun; 22(5):516-524. PubMed ID: 28346088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release.
    Sabhachandani P; Sarkar S; Mckenney S; Ravi D; Evens AM; Konry T
    J Control Release; 2019 Feb; 295():21-30. PubMed ID: 30550941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.