These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25592060)

  • 1. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors.
    Díaz SA; Gillanders F; Jares-Erijman EA; Jovin TM
    Nat Commun; 2015 Jan; 6():6036. PubMed ID: 25592060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET).
    Giordano L; Jovin TM; Irie M; Jares-Erijman EA
    J Am Chem Soc; 2002 Jun; 124(25):7481-9. PubMed ID: 12071757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitivity of time-resolved FRET bioassays.
    Wegner KD; Lanh PT; Jennings T; Oh E; Jain V; Fairclough SM; Smith JM; Giovanelli E; Lequeux N; Pons T; Hildebrandt N
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2881-92. PubMed ID: 23496235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dots as templates for self-assembly of photoswitchable polymers: small, dual-color nanoparticles capable of facile photomodulation.
    Díaz SA; Giordano L; Azcárate JC; Jovin TM; Jares-Erijman EA
    J Am Chem Soc; 2013 Feb; 135(8):3208-17. PubMed ID: 23360378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-Soluble, Thermostable, Photomodulated Color-Switching Quantum Dots.
    Díaz SA; Gillanders F; Susumu K; Oh E; Medintz IL; Jovin TM
    Chemistry; 2017 Jan; 23(2):263-267. PubMed ID: 27723151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of a photoswitchable dual-color quantum dot containing a photochromic FRET acceptor and an internal standard.
    Díaz SA; Giordano L; Jovin TM; Jares-Erijman EA
    Nano Lett; 2012 Jul; 12(7):3537-44. PubMed ID: 22663176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lanthanides and quantum dots as Förster resonance energy transfer agents for diagnostics and cellular imaging.
    Geißler D; Linden S; Liermann K; Wegner KD; Charbonnière LJ; Hildebrandt N
    Inorg Chem; 2014 Feb; 53(4):1824-38. PubMed ID: 24099579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex Förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly.
    Stewart MH; Huston AL; Scott AM; Efros AL; Melinger JS; Gemmill KB; Trammell SA; Blanco-Canosa JB; Dawson PE; Medintz IL
    ACS Nano; 2012 Jun; 6(6):5330-47. PubMed ID: 22671940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoswitchable water-soluble quantum dots: pcFRET based on amphiphilic photochromic polymer coating.
    Díaz SA; Menéndez GO; Etchehon MH; Giordano L; Jovin TM; Jares-Erijman EA
    ACS Nano; 2011 Apr; 5(4):2795-805. PubMed ID: 21375335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A potential carcinogenic pyrene derivative under Förster resonance energy transfer to various energy acceptors in nanoscopic environments.
    Banerjee S; Goswami N; Pal SK
    Chemphyschem; 2013 Oct; 14(15):3581-93. PubMed ID: 24038989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A brief overview of some physical studies on the relaxation dynamics and Förster resonance energy transfer of semiconductor quantum dots.
    Sadhu S; Patra A
    Chemphyschem; 2013 Aug; 14(12):2641-53. PubMed ID: 23804322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules.
    Hardzei M; Artemyev M; Molinari M; Troyon M; Sukhanova A; Nabiev I
    Chemphyschem; 2012 Jan; 13(1):330-5. PubMed ID: 22228648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nanoparticle dimensionality on fluorescence resonance energy transfer in nanoparticle-dye conjugated systems.
    Halivni S; Sitt A; Hadar I; Banin U
    ACS Nano; 2012 Mar; 6(3):2758-65. PubMed ID: 22314148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanide-to-quantum dot Förster resonance energy transfer (FRET): Application for immunoassay.
    Goryacheva OA; Beloglazova NV; Vostrikova AM; Pozharov MV; Sobolev AM; Goryacheva IY
    Talanta; 2017 Mar; 164():377-385. PubMed ID: 28107944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.