BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25592284)

  • 21. Tetronic-grafted chitosan hydrogel as an injectable and biocompatible scaffold for biomedical applications.
    Nguyen DH; Tran NQ; Nguyen CK
    J Biomater Sci Polym Ed; 2013; 24(14):1636-48. PubMed ID: 23607763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of gum tragacanth/poly (vinyl alcohol)/halloysite hydrogel using electron beam irradiation with potential for bone tissue engineering.
    Dehghan-Niri M; Vasheghani-Farahani E; Eslaminejad MB; Tavakol M; Bagheri F
    Carbohydr Polym; 2023 Apr; 305():120548. PubMed ID: 36737197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel pH-sensitive alginate hydrogel delivery system reinforced with gum tragacanth for intestinal targeting of nutraceuticals.
    Apoorva A; Rameshbabu AP; Dasgupta S; Dhara S; Padmavati M
    Int J Biol Macromol; 2020 Mar; 147():675-687. PubMed ID: 31926225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices.
    Chen L; Tian Z; Du Y
    Biomaterials; 2004 Aug; 25(17):3725-32. PubMed ID: 15020148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release.
    Wu DQ; Sun YX; Xu XD; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2008 Apr; 9(4):1155-62. PubMed ID: 18307310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low cost hydrogels based on gum Tragacanth and TiO
    Ranjbar-Mohammadi M; Rahimdokht M; Pajootan E
    Int J Biol Macromol; 2019 Aug; 134():967-975. PubMed ID: 31071399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels.
    Lim KS; Alves MH; Poole-Warren LA; Martens PJ
    Biomaterials; 2013 Sep; 34(29):7097-105. PubMed ID: 23800741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An injectable enzymatically crosslinked tyramine-modified carboxymethyl chitin hydrogel for biomedical applications.
    Bi B; Liu H; Kang W; Zhuo R; Jiang X
    Colloids Surf B Biointerfaces; 2019 Mar; 175():614-624. PubMed ID: 30583217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates.
    Jin R; Hiemstra C; Zhong Z; Feijen J
    Biomaterials; 2007 Jun; 28(18):2791-800. PubMed ID: 17379300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tragacanth gum-based multifunctional hydrogels and green synthesis of their silver nanocomposites for drug delivery and inactivation of multidrug resistant bacteria.
    Nagaraja K; Rao KM; Reddy GV; Rao KSVK
    Int J Biol Macromol; 2021 Mar; 174():502-511. PubMed ID: 33539957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers.
    Yuan H; Li B; Liang K; Lou X; Zhang Y
    Biomed Mater; 2014 Aug; 9(5):055001. PubMed ID: 25135109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel nanohydrogel based on itaconic acid grafted tragacanth gum for controlled release of ampicillin.
    Pathania D; Verma C; Negi P; Tyagi I; Asif M; Kumar NS; Al-Ghurabi EH; Agarwal S; Gupta VK
    Carbohydr Polym; 2018 Sep; 196():262-271. PubMed ID: 29891295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature.
    Wang LS; Lee F; Lim J; Du C; Wan AC; Lee SS; Kurisawa M
    Acta Biomater; 2014 Jun; 10(6):2539-50. PubMed ID: 24561710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supramolecular hydrogels exhibiting fast in situ gel forming and adjustable degradation properties.
    Tran NQ; Joung YK; Lih E; Park KM; Park KD
    Biomacromolecules; 2010 Mar; 11(3):617-25. PubMed ID: 20166679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast in situ generated ɛ-polylysine-poly (ethylene glycol) hydrogels as tissue adhesives and hemostatic materials using an enzyme-catalyzed method.
    Wang R; Zhou B; Liu W; Feng XH; Li S; Yu DF; Chang JC; Chi B; Xu H
    J Biomater Appl; 2015 Mar; 29(8):1167-79. PubMed ID: 25281646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair.
    Moreira Teixeira LS; Bijl S; Pully VV; Otto C; Jin R; Feijen J; van Blitterswijk CA; Dijkstra PJ; Karperien M
    Biomaterials; 2012 Apr; 33(11):3164-74. PubMed ID: 22265787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ forming, metal-adhesive heparin hydrogel surfaces for blood-compatible coating.
    Joung YK; You SS; Park KM; Go DH; Park KD
    Colloids Surf B Biointerfaces; 2012 Nov; 99():102-7. PubMed ID: 22100384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Injectable and fast self-healing protein hydrogels.
    Zhang X; Jiang S; Yan T; Fan X; Li F; Yang X; Ren B; Xu J; Liu J
    Soft Matter; 2019 Oct; 15(38):7583-7589. PubMed ID: 31465079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery.
    Singh NK; Lee DS
    J Control Release; 2014 Nov; 193():214-27. PubMed ID: 24815421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.