These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Influences on mercury bioaccumulation factors for the Savannah River. Paller MH; Bowers JA; Littrell JW; Guanlao AV Arch Environ Contam Toxicol; 2004 Feb; 46(2):236-43. PubMed ID: 15106676 [TBL] [Abstract][Full Text] [Related]
3. Optimizing stream water mercury sampling for calculation of fish bioaccumulation factors. Riva-Murray K; Bradley PM; Scudder Eikenberry BC; Knightes CD; Journey CA; Brigham ME; Button DT Environ Sci Technol; 2013 Jun; 47(11):5904-12. PubMed ID: 23668662 [TBL] [Abstract][Full Text] [Related]
4. Mercury concentrations in water and hybrid striped bass (Morone saxatilis × M. chrysops) muscle tissue samples collected from the Ohio River, USA. Emery EB; Spaeth JP Arch Environ Contam Toxicol; 2011 Apr; 60(3):486-95. PubMed ID: 20577729 [TBL] [Abstract][Full Text] [Related]
5. Spatial trends and impairment assessment of mercury in sport fish in the Sacramento-San Joaquin Delta watershed. Melwani AR; Bezalel SN; Hunt JA; Grenier JL; Ichikawa G; Heim W; Bonnema A; Foe C; Slotton DG; Davis JA Environ Pollut; 2009 Nov; 157(11):3137-49. PubMed ID: 19482398 [TBL] [Abstract][Full Text] [Related]
6. Prediction of fish and sediment mercury in streams using landscape variables and historical mining. Alpers CN; Yee JL; Ackerman JT; Orlando JL; Slotton DG; Marvin-DiPasquale MC Sci Total Environ; 2016 Nov; 571():364-79. PubMed ID: 27378154 [TBL] [Abstract][Full Text] [Related]
7. Development of an empirical nonlinear model for mercury bioaccumulation in the South and South Fork Shenandoah rivers of Virginia. Brent RN; Kain DG Arch Environ Contam Toxicol; 2011 Nov; 61(4):614-23. PubMed ID: 21448743 [TBL] [Abstract][Full Text] [Related]
8. A comparison of the non-essential elements cadmium, mercury, and lead found in fish and sediment from Alaska and California. Meador JP; Ernest DW; Kagley AN Sci Total Environ; 2005 Mar; 339(1-3):189-205. PubMed ID: 15740769 [TBL] [Abstract][Full Text] [Related]
9. Temporal trends in fish mercury concentrations in an Adirondack Lake managed with a continual predator removal program. Taylor MS; Driscoll CT; Lepak JM; Josephson DC; Jirka KJ; Kraft CE Ecotoxicology; 2020 Dec; 29(10):1762-1773. PubMed ID: 31925620 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Mercury Elimination Rate Coefficients of Fish is Improved by Incorporating Fish Temperature Classification into Models. Yao S; Drouillard KG Bull Environ Contam Toxicol; 2019 Nov; 103(5):657-662. PubMed ID: 31492971 [TBL] [Abstract][Full Text] [Related]
11. A dynamic model using monitoring data and watershed characteristics to project fish tissue mercury concentrations in stream systems. Chan C; Heinbokel JF; Myers JA; Jacobs RR Integr Environ Assess Manag; 2012 Oct; 8(4):709-22. PubMed ID: 22535752 [TBL] [Abstract][Full Text] [Related]
12. Mercury and other trace elements in Ohio River fish collected near coal-fired power plants: Interspecific patterns and consideration of consumption risks. Reash RJ; Brown L; Merritt K Integr Environ Assess Manag; 2015 Jul; 11(3):474-80. PubMed ID: 25586716 [TBL] [Abstract][Full Text] [Related]
13. Mercury concentration in fish from streams and rivers throughout the western United States. Peterson SA; Van Sickle J; Herlihy AT; Hughes RM Environ Sci Technol; 2007 Jan; 41(1):58-65. PubMed ID: 17265927 [TBL] [Abstract][Full Text] [Related]
14. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes. Eagles-Smith CA; Herring G; Johnson B; Graw R Environ Pollut; 2016 May; 212():279-289. PubMed ID: 26854697 [TBL] [Abstract][Full Text] [Related]
15. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of mid-atlantic wadeable streams. Barber MC; Rashleigh B; Cyterski MJ Integr Environ Assess Manag; 2016 Jan; 12(1):146-59. PubMed ID: 25858149 [TBL] [Abstract][Full Text] [Related]
16. Mercury contamination of the fish community of a semi-arid and arid river system: spatial variation and the influence of environmental gradients. Smith A; Abuzeineh AA; Chumchal MM; Bonner TH; Nowlin WH Environ Toxicol Chem; 2010 Aug; 29(8):1762-72. PubMed ID: 20821630 [TBL] [Abstract][Full Text] [Related]
17. Cross-basin comparison of mercury bioaccumulation in Lake Huron lake trout emphasizes ecological characteristics. Abma RA; Paterson G; McLeod A; Haffner GD Environ Toxicol Chem; 2015 Feb; 34(2):355-9. PubMed ID: 25402744 [TBL] [Abstract][Full Text] [Related]
18. Mercury trends in fish from rivers and lakes in the United States, 1969-2005. Chalmers AT; Argue DM; Gay DA; Brigham ME; Schmitt CJ; Lorenz DL Environ Monit Assess; 2011 Apr; 175(1-4):175-91. PubMed ID: 20535551 [TBL] [Abstract][Full Text] [Related]
19. Mercury bioaccumulation and biomagnification in Ozark stream ecosystems. Schmitt CJ; Stricker CA; Brumbaugh WG Ecotoxicol Environ Saf; 2011 Nov; 74(8):2215-24. PubMed ID: 21868094 [TBL] [Abstract][Full Text] [Related]
20. Mercury bioaccumulation patterns in fish from the Iténez river basin, Bolivian Amazon. Pouilly M; Pérez T; Rejas D; Guzman F; Crespo G; Duprey JL; Guimarães JR Ecotoxicol Environ Saf; 2012 Sep; 83():8-15. PubMed ID: 22727595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]