BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25592550)

  • 1. Controlled Endolysosomal Release of Agents by pH-responsive Polymer Blend Particles.
    Zhan X; Tran KK; Wang L; Shen H
    Pharm Res; 2015 Jul; 32(7):2280-91. PubMed ID: 25592550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.
    Fernando LP; Lewis JS; Evans BC; Duvall CL; Keselowsky BG
    J Biomed Mater Res A; 2018 Apr; 106(4):1022-1033. PubMed ID: 29164777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery.
    Panyam J; Zhou WZ; Prabha S; Sahoo SK; Labhasetwar V
    FASEB J; 2002 Aug; 16(10):1217-26. PubMed ID: 12153989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Responsive Poly(D,L-lactic-co-glycolic acid) Nanoparticles with Rapid Antigen Release Behavior Promote Immune Response.
    Liu Q; Chen X; Jia J; Zhang W; Yang T; Wang L; Ma G
    ACS Nano; 2015 May; 9(5):4925-38. PubMed ID: 25898266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization.
    Wang N; Wu XS; Li C; Feng MF
    J Biomater Sci Polym Ed; 2000; 11(3):301-18. PubMed ID: 10841281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing Endosomal Escape Using pHlexi Nanoparticles.
    Kongkatigumjorn N; Cortez-Jugo C; Czuba E; Wong AS; Hodgetts RY; Johnston AP; Such GK
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27786422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments.
    Ke CJ; Su TY; Chen HL; Liu HL; Chiang WL; Chu PC; Xia Y; Sung HW
    Angew Chem Int Ed Engl; 2011 Aug; 50(35):8086-9. PubMed ID: 21751316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Smart' delivery systems for biomolecular therapeutics.
    Stayton PS; El-Sayed ME; Murthy N; Bulmus V; Lackey C; Cheung C; Hoffman AS
    Orthod Craniofac Res; 2005 Aug; 8(3):219-25. PubMed ID: 16022724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of lauryl capping group on protein release and degradation of poly(D,L-lactic-co-glycolic acid) particles.
    Samadi N; Abbadessa A; Di Stefano A; van Nostrum CF; Vermonden T; Rahimian S; Teunissen EA; van Steenbergen MJ; Amidi M; Hennink WE
    J Control Release; 2013 Dec; 172(2):436-43. PubMed ID: 23751568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of monomer order on the hydrolysis of biodegradable poly(lactic-co-glycolic acid) repeating sequence copolymers.
    Li J; Rothstein SN; Little SR; Edenborn HM; Meyer TY
    J Am Chem Soc; 2012 Oct; 134(39):16352-9. PubMed ID: 22950719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum.
    Kohane DS; Tse JY; Yeo Y; Padera R; Shubina M; Langer R
    J Biomed Mater Res A; 2006 May; 77(2):351-61. PubMed ID: 16425240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, characterization, and in vitro evaluation of physostigmine-loaded poly(ortho ester) and poly(ortho ester)/poly(D,L-lactide-co-glycolide) blend microspheres fabricated by spray drying.
    Wang L; Chaw CS; Yang YY; Moochhala SM; Zhao B; Ng S; Heller J
    Biomaterials; 2004 Jul; 25(16):3275-82. PubMed ID: 14980422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting intracellular compartments by magnetic polymeric nanoparticles.
    Kocbek P; Kralj S; Kreft ME; Kristl J
    Eur J Pharm Sci; 2013 Sep; 50(1):130-8. PubMed ID: 23603023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembling dual component nanoparticles with endosomal escape capability.
    Wong AS; Mann SK; Czuba E; Sahut A; Liu H; Suekama TC; Bickerton T; Johnston AP; Such GK
    Soft Matter; 2015 Apr; 11(15):2993-3002. PubMed ID: 25731820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release.
    Chhabra R; Grabrucker AM; Veratti P; Belletti D; Boeckers TM; Vandelli MA; Forni F; Tosi G; Ruozi B
    Int J Pharm; 2014 Aug; 471(1-2):349-57. PubMed ID: 24882034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programming the composition of polymer blend particles for controlled immunity towards individual protein antigens.
    Zhan X; Shen H
    Vaccine; 2015 May; 33(23):2719-26. PubMed ID: 25902361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of PLGA particles for subcutaneous controlled drug release by membrane emulsification.
    Gasparini G; Kosvintsev SR; Stillwell MT; Holdich RG
    Colloids Surf B Biointerfaces; 2008 Feb; 61(2):199-207. PubMed ID: 17919891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches.
    Mohammadi-Samani S; Taghipour B
    Pharm Dev Technol; 2015 Jun; 20(4):385-93. PubMed ID: 24483777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLGA:poloxamer and PLGA:poloxamine blend nanoparticles: new carriers for gene delivery.
    Csaba N; Caamaño P; Sánchez A; Domínguez F; Alonso MJ
    Biomacromolecules; 2005; 6(1):271-8. PubMed ID: 15638530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.