These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 25592847)
1. Semi-supervised adaptive-height snipping of the hierarchical clustering tree. Obulkasim A; Meijer GA; van de Wiel MA BMC Bioinformatics; 2015 Jan; 16(1):15. PubMed ID: 25592847 [TBL] [Abstract][Full Text] [Related]
2. HCsnip: An R Package for Semi-supervised Snipping of the Hierarchical Clustering Tree. Obulkasim A; van de Wiel MA Cancer Inform; 2015; 14():1-19. PubMed ID: 25861213 [TBL] [Abstract][Full Text] [Related]
3. Hierarchical tree snipping: clustering guided by prior knowledge. Dotan-Cohen D; Melkman AA; Kasif S Bioinformatics; 2007 Dec; 23(24):3335-42. PubMed ID: 17989094 [TBL] [Abstract][Full Text] [Related]
5. Fast tree aggregation for consensus hierarchical clustering. Hulot A; Chiquet J; Jaffrézic F; Rigaill G BMC Bioinformatics; 2020 Mar; 21(1):120. PubMed ID: 32197576 [TBL] [Abstract][Full Text] [Related]
6. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Langfelder P; Zhang B; Horvath S Bioinformatics; 2008 Mar; 24(5):719-20. PubMed ID: 18024473 [TBL] [Abstract][Full Text] [Related]
7. Identifying clusters in genomics data by recursive partitioning. Nilsen G; Borgan O; Liestøl K; Lingjærde OC Stat Appl Genet Mol Biol; 2013 Oct; 12(5):637-52. PubMed ID: 23942354 [TBL] [Abstract][Full Text] [Related]
8. Reordering hierarchical tree based on bilateral symmetric distance. Chae M; Chen JJ PLoS One; 2011; 6(8):e22546. PubMed ID: 21829631 [TBL] [Abstract][Full Text] [Related]
9. Selection of informative clusters from hierarchical cluster tree with gene classes. Toronen P BMC Bioinformatics; 2004 Mar; 5():32. PubMed ID: 15043761 [TBL] [Abstract][Full Text] [Related]
10. HGC: fast hierarchical clustering for large-scale single-cell data. Zou Z; Hua K; Zhang X Bioinformatics; 2021 Nov; 37(21):3964-3965. PubMed ID: 34096998 [TBL] [Abstract][Full Text] [Related]
11. The potential of clustering methods to define intersection test scenarios: Assessing real-life performance of AEB. Sander U; Lubbe N Accid Anal Prev; 2018 Apr; 113():1-11. PubMed ID: 29355748 [TBL] [Abstract][Full Text] [Related]
12. Consensus framework for exploring microarray data using multiple clustering methods. Laderas T; McWeeney S OMICS; 2007; 11(1):116-28. PubMed ID: 17411399 [TBL] [Abstract][Full Text] [Related]
14. Detecting clusters of different geometrical shapes in microarray gene expression data. Kim DW; Lee KH; Lee D Bioinformatics; 2005 May; 21(9):1927-34. PubMed ID: 15647300 [TBL] [Abstract][Full Text] [Related]
15. Attribute clustering for grouping, selection, and classification of gene expression data. Au WH; Chan KC; Wong AK; Wang Y IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):83-101. PubMed ID: 17044174 [TBL] [Abstract][Full Text] [Related]
16. How many clusters: a validation index for arbitrary-shaped clusters. Bayá AE; Granitto PM IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):401-14. PubMed ID: 23929864 [TBL] [Abstract][Full Text] [Related]
17. A new algorithm for comparing and visualizing relationships between hierarchical and flat gene expression data clusterings. Torrente A; Kapushesky M; Brazma A Bioinformatics; 2005 Nov; 21(21):3993-9. PubMed ID: 16141251 [TBL] [Abstract][Full Text] [Related]
18. densityCut: an efficient and versatile topological approach for automatic clustering of biological data. Ding J; Shah S; Condon A Bioinformatics; 2016 Sep; 32(17):2567-76. PubMed ID: 27153661 [TBL] [Abstract][Full Text] [Related]
19. Statistical significance for hierarchical clustering. Kimes PK; Liu Y; Neil Hayes D; Marron JS Biometrics; 2017 Sep; 73(3):811-821. PubMed ID: 28099990 [TBL] [Abstract][Full Text] [Related]
20. Retro: concept-based clustering of biomedical topical sets. Yeganova L; Kim W; Kim S; Wilbur WJ Bioinformatics; 2014 Nov; 30(22):3240-8. PubMed ID: 25075115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]