These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 2559287)
21. Observations of energy metabolism in neuroectodermal tumors using in vivo 31P-NMR. Naruse S; Horikawa Y; Tanaka C; Higuchi T; Ueda S; Hirakawa K; Nishikawa H; Watari H Magn Reson Imaging; 1985; 3(2):117-23. PubMed ID: 4033375 [TBL] [Abstract][Full Text] [Related]
22. Effects of hyperglycemia on oxygenation, radiosensitivity and bioenergetic status of subcutaneous RIF-1 tumors. Nadal-Desbarats L; Poptani H; Oprysko P; Jenkins WT; Busch TM; Nelson DS; Glickson JD; Koch CJ; Evans SM Int J Oncol; 2002 Jul; 21(1):103-10. PubMed ID: 12063556 [TBL] [Abstract][Full Text] [Related]
23. In vivo 1H NMR spectroscopy of an intracerebral glioma in the rat. Remy C; Von Kienlin M; Lotito S; Francois A; Benabid AL; Decorps M Magn Reson Med; 1989 Mar; 9(3):395-401. PubMed ID: 2710005 [TBL] [Abstract][Full Text] [Related]
24. Timing of hypertonic glucose and thermochemotherapy with 1-(4-amino-2-methylpyrimidine-5-yl) methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU) in the BT4An rat glioma: relation to intratumoral pH reduction and circulatory changes after glucose supply. Schem BC; Roszinski S; Krossnes BK; Mella O Int J Radiat Oncol Biol Phys; 1995 Sep; 33(2):409-16. PubMed ID: 7673028 [TBL] [Abstract][Full Text] [Related]
25. Tumor blood flow and the cytotoxic effects of estramustine and its constituents in a rat glioma model. Johansson M; Bergenheim AT; Henriksson R; Koskinen LO; Vallbo C; Widmark A Neurosurgery; 1997 Jul; 41(1):237-43; discussion 243-4. PubMed ID: 9218312 [TBL] [Abstract][Full Text] [Related]
26. Effects of acute hyperammonemia on cerebral amino acid metabolism and pHi in vivo, measured by 1H and 31P nuclear magnetic resonance. Fitzpatrick SM; Hetherington HP; Behar KL; Shulman RG J Neurochem; 1989 Mar; 52(3):741-9. PubMed ID: 2563756 [TBL] [Abstract][Full Text] [Related]
27. Diabetic chronic hyperglycemia and cerebral pH recovery following global ischemia in dogs. Sieber FE; Koehler RC; Brown PR; Eleff SM; Traystman RJ Stroke; 1994 Jul; 25(7):1449-55. PubMed ID: 8023362 [TBL] [Abstract][Full Text] [Related]
28. 31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Adam WR; Koretsky AP; Weiner MW Am J Physiol; 1986 Nov; 251(5 Pt 2):F904-10. PubMed ID: 3777186 [TBL] [Abstract][Full Text] [Related]
29. Localized proton NMR spectroscopy of experimental gliomas in rat brain in vivo. Gyngell ML; Hoehn-Berlage M; Kloiber O; Michaelis T; Ernestus RI; Hörstermann D; Frahm J NMR Biomed; 1992; 5(6):335-40. PubMed ID: 1336973 [TBL] [Abstract][Full Text] [Related]
30. Hyperglycemia in global cerebral ischemia and reperfusion: a 31-phosphorous NMR spectroscopy study in rats. Haraldseth O; Nygård O; Grønås T; Southon T; Gisvold SE; Unsgård G Acta Anaesthesiol Scand; 1992 Jan; 36(1):25-30. PubMed ID: 1539475 [TBL] [Abstract][Full Text] [Related]
31. Reduction of intratumoral pH by the mitochondrial inhibitor m-iodobenzylguanidine and moderate hyperglycemia. Kuin A; Smets L; Volk T; Paans A; Adams G; Atema A; Jähde E; Maas A; Rajewsky MF; Visser G Cancer Res; 1994 Jul; 54(14):3785-92. PubMed ID: 8033098 [TBL] [Abstract][Full Text] [Related]
32. Moderate hyperglycemia affects ischemic brain ATP levels but not intracellular pH. Hsu SS; Meno JR; Gronka R; Kushmerick M; Winn HR Am J Physiol; 1994 Jan; 266(1 Pt 2):H258-62. PubMed ID: 8304507 [TBL] [Abstract][Full Text] [Related]
33. Intracellular acidification of human melanoma xenografts by the respiratory inhibitor m-iodobenzylguanidine plus hyperglycemia: a 31P magnetic resonance spectroscopy study. Zhou R; Bansal N; Leeper DB; Glickson JD Cancer Res; 2000 Jul; 60(13):3532-6. PubMed ID: 10910065 [TBL] [Abstract][Full Text] [Related]
34. pH in human tumor xenografts and transplanted rat tumors: effect of insulin, inorganic phosphate, and m-iodobenzylguanidine. Jähde E; Volk T; Atema A; Smets LA; Glüsenkamp KH; Rajewsky MF Cancer Res; 1992 Nov; 52(22):6209-15. PubMed ID: 1423263 [TBL] [Abstract][Full Text] [Related]
35. FSaII mouse tumor metabolic changes with different doses of glucose measured by 31P nuclear magnetic resonance. Koutcher JA; Fellenz MP; Vaupel PW; Gerweck LE Cancer Res; 1988 Nov; 48(21):5917-21. PubMed ID: 3139286 [TBL] [Abstract][Full Text] [Related]
36. Metabolic changes during experimental cerebral ischemia in hyperglycemic rats, observed by 31P and 1H magnetic resonance spectroscopy. Bolas NM; Rajagopalan B; Mitsumori F; Radda GK Stroke; 1988 May; 19(5):608-14. PubMed ID: 3363594 [TBL] [Abstract][Full Text] [Related]
37. Role of oxygen vs. glucose in energy metabolism in a mammary carcinoma perfused ex vivo: direct measurement by 31P NMR. Eskey CJ; Koretsky AP; Domach MM; Jain RK Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2646-50. PubMed ID: 8464871 [TBL] [Abstract][Full Text] [Related]
38. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply. Lyng H; Olsen DR; Southon TE; Rofstad EK Br J Cancer; 1993 Dec; 68(6):1061-70. PubMed ID: 8260356 [TBL] [Abstract][Full Text] [Related]
39. Comparative 31P and 1H NMR studies on rat astrocytes and C6 glioma cells in culture. Merle M; Pianet I; Canioni P; Labouesse J Biochimie; 1992; 74(9-10):919-30. PubMed ID: 1334701 [TBL] [Abstract][Full Text] [Related]
40. Graded global ischaemia and reperfusion of the isolated perfused rat heart: characterisation by 31P NMR spectroscopy of the extent of energy metabolism damage. Lavanchy N; Martin J; Rossi A Cardiovasc Res; 1984 Sep; 18(9):573-82. PubMed ID: 6467274 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]