These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25593187)

  • 1. Semiconductor double quantum dot micromaser.
    Liu YY; Stehlik J; Eichler C; Gullans MJ; Taylor JM; Petta JR
    Science; 2015 Jan; 347(6219):285-7. PubMed ID: 25593187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injection Locking of a Semiconductor Double Quantum Dot Micromaser.
    Liu YY; Stehlik J; Gullans MJ; Taylor JM; Petta JR
    Phys Rev A; 2015 Nov; 92(5):. PubMed ID: 28127226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threshold Dynamics of a Semiconductor Single Atom Maser.
    Liu YY; Stehlik J; Eichler C; Mi X; Hartke TR; Gullans MJ; Taylor JM; Petta JR
    Phys Rev Lett; 2017 Sep; 119(9):097702. PubMed ID: 28949587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled cavity terahertz quantum cascade lasers with integrated emission monitoring.
    Krall M; Martl M; Bachmann D; Deutsch C; Andrews AM; Schrenk W; Strasser G; Unterrainer K
    Opt Express; 2015 Feb; 23(3):3581-8. PubMed ID: 25836210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Move Aside Pentacene: Diazapentacene-Doped para-Terphenyl, a Zero-Field Room-Temperature Maser with Strong Coupling for Cavity Quantum Electrodynamics.
    Ng W; Xu X; Attwood M; Wu H; Meng Z; Chen X; Oxborrow M
    Adv Mater; 2023 Jun; 35(22):e2300441. PubMed ID: 36919948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring Coherent Microwave Emission from a Solid-State Hybrid System for Room-Temperature Microwave Quantum Electronics.
    Wang K; Wu H; Zhang B; Yao X; Zhang J; Oxborrow M; Zhao Q
    Adv Sci (Weinh); 2024 Sep; 11(35):e2401904. PubMed ID: 39007198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.
    Pelc JS; Yu L; De Greve K; McMahon PL; Natarajan CM; Esfandyarpour V; Maier S; Schneider C; Kamp M; Höfling S; Hadfield RH; Forchel A; Yamamoto Y; Fejer MM
    Opt Express; 2012 Dec; 20(25):27510-9. PubMed ID: 23262701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent optical spectroscopy of a strongly driven quantum dot.
    Xu X; Sun B; Berman PR; Steel DG; Bracker AS; Gammon D; Sham LJ
    Science; 2007 Aug; 317(5840):929-32. PubMed ID: 17702938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers.
    Kim J; Delfyett PJ
    Opt Express; 2009 Dec; 17(25):22566-70. PubMed ID: 20052181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operating single quantum emitters with a compact Stirling cryocooler.
    Schlehahn A; Krüger L; Gschrey M; Schulze JH; Rodt S; Strittmatter A; Heindel T; Reitzenstein S
    Rev Sci Instrum; 2015 Jan; 86(1):013113. PubMed ID: 25638078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-tuned quantum dot gain in photonic crystal lasers.
    Strauf S; Hennessy K; Rakher MT; Choi YS; Badolato A; Andreani LC; Hu EL; Petroff PM; Bouwmeester D
    Phys Rev Lett; 2006 Mar; 96(12):127404. PubMed ID: 16605958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybridization of electronic states in quantum dots through photon emission.
    Karrai K; Warburton RJ; Schulhauser C; Högele A; Urbaszek B; McGhee EJ; Govorov AO; Garcia JM; Gerardot BD; Petroff PM
    Nature; 2004 Jan; 427(6970):135-8. PubMed ID: 14712271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters.
    Grange T; Hornecker G; Hunger D; Poizat JP; Gérard JM; Senellart P; Auffèves A
    Phys Rev Lett; 2015 May; 114(19):193601. PubMed ID: 26024171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically programmable electron spin memory using semiconductor quantum dots.
    Kroutvar M; Ducommun Y; Heiss D; Bichler M; Schuh D; Abstreiter G; Finley JJ
    Nature; 2004 Nov; 432(7013):81-4. PubMed ID: 15525984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent control of a high-orbital hole in a semiconductor quantum dot.
    Yan JY; Chen C; Zhang XD; Wang YT; Babin HG; Wieck AD; Ludwig A; Meng Y; Hu X; Duan H; Chen W; Fang W; Cygorek M; Lin X; Wang DW; Jin CY; Liu F
    Nat Nanotechnol; 2023 Oct; 18(10):1139-1146. PubMed ID: 37488220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driven coherent oscillations of a single electron spin in a quantum dot.
    Koppens FH; Buizert C; Tielrooij KJ; Vink IT; Nowack KC; Meunier T; Kouwenhoven LP; Vandersypen LM
    Nature; 2006 Aug; 442(7104):766-71. PubMed ID: 16915280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating single microwave photons in a circuit.
    Houck AA; Schuster DI; Gambetta JM; Schreier JA; Johnson BR; Chow JM; Frunzio L; Majer J; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7160):328-31. PubMed ID: 17882217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.