BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 2559335)

  • 1. A novel type of GABA receptor in rat spinal cord?
    Raiteri M; Pellegrini G; Cantoni C; Bonanno G
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Dec; 340(6):666-70. PubMed ID: 2559335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release-regulating autoreceptors of the GABAB-type in human cerebral cortex.
    Bonanno G; Cavazzani P; Andrioli GC; Asaro D; Pellegrini G; Raiteri M
    Br J Pharmacol; 1989 Feb; 96(2):341-6. PubMed ID: 2538189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on [3H]GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABAB type.
    Pittaluga A; Asaro D; Pellegrini G; Raiteri M
    Eur J Pharmacol; 1987 Nov; 144(1):45-52. PubMed ID: 2830119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of gamma-[3H]aminobutyric acid (GABA) from electrically stimulated rat cortical slices and its modulation by GABAB autoreceptors.
    Raiteri M; Bonanno G; Fedele E
    J Pharmacol Exp Ther; 1989 Aug; 250(2):648-53. PubMed ID: 2547942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABAB autoreceptors in rat cortex synaptosomes: response under different depolarizing and ionic conditions.
    Bonanno G; Pellegrini G; Asaro D; Fontana G; Raiteri M
    Eur J Pharmacol; 1989 Mar; 172(1):41-9. PubMed ID: 2540998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABA terminal autoreceptors in the pars compacta and in the pars reticulata of the rat substantia nigra are GABAB.
    Giralt MT; Bonanno G; Raiteri M
    Eur J Pharmacol; 1990 Jan; 175(2):137-44. PubMed ID: 2155793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Baclofen and phaclofen modulate GABA release from slices of rat cerebral cortex and spinal cord but not from retina.
    Neal MJ; Shah MA
    Br J Pharmacol; 1989 Sep; 98(1):105-12. PubMed ID: 2804540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. gamma-Aminobutyric acid (GABA) autoreceptors in rat cerebral cortex and spinal cord represent pharmacologically distinct subtypes of the GABAB receptor.
    Bonanno G; Raiteri M
    J Pharmacol Exp Ther; 1993 May; 265(2):765-70. PubMed ID: 8388458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. gamma-Aminobutyric acid (GABA) stimulates somatostatin release following activation of a GABA uptake carrier located on somatostatin nerve endings of rat cerebral cortex.
    Raiteri M; Bonanno G; Fedele E; Fontana G; Gemignani A
    J Pharmacol Exp Ther; 1991 Jan; 256(1):88-93. PubMed ID: 1671101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic nerve terminals of human cerebral cortex possess a GABA transporter whose activation induces release of acetylcholine.
    Bonanno G; Ruelle A; Andrioli GC; Raiteri M
    Brain Res; 1991 Jan; 539(2):191-5. PubMed ID: 2054596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of endogenous glutamic and aspartic acids from cerebrocortex synaptosomes and its modulation through activation of a gamma-aminobutyric acidB (GABAB) receptor subtype.
    Pende M; Lanza M; Bonanno G; Raiteri M
    Brain Res; 1993 Feb; 604(1-2):325-30. PubMed ID: 8096158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of carriers for dopamine and GABA uptake on a same nerve terminal in the rat brain.
    Bonanno G; Raiteri M
    Br J Pharmacol; 1987 May; 91(1):237-43. PubMed ID: 3594080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. gamma-Aminobutyric acid and glycine modulate each other's release through heterocarriers sited on the releasing axon terminals of rat CNS.
    Raiteri M; Bonanno G; Pende M
    J Neurochem; 1992 Oct; 59(4):1481-9. PubMed ID: 1402899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of intravenous general anesthetics on [3H]GABA release from rat cortical synaptosomes.
    Murugaiah KD; Hemmings HC
    Anesthesiology; 1998 Oct; 89(4):919-28. PubMed ID: 9778010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAA receptor-mediated K(+)-evoked GABA release from globus pallidus--analysis using microdialysis.
    Hashimoto T; Kuriyama K
    Neurochem Int; 1997 Mar; 30(3):247-52. PubMed ID: 9041555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noradrenaline release in the rat vena cava is inhibited by gamma-aminobutyric acid via GABAB receptors but not affected by histamine.
    Schneider D; Schlicker E; Malinowska B; Molderings G
    Br J Pharmacol; 1991 Oct; 104(2):478-82. PubMed ID: 1665738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA, acting at both GABAA and GABAB receptors, inhibits the release of cholecystokinin-like material from the rat spinal cord in vitro.
    Benoliel JJ; Bourgoin S; Mauborgne A; Pohl M; Legrand JC; Hamon M; Cesselin F
    Brain Res; 1992 Sep; 590(1-2):255-62. PubMed ID: 1330214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential involvement of a baclofen-sensitive autoreceptor in the modulation of the release of endogenous GABA from rat brain slices in vitro.
    Waldmeier PC; Wicki P; Feldtrauer JJ; Baumann PA
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Mar; 337(3):289-95. PubMed ID: 2839779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of endogenous GABA from the substantia nigra is not controlled by GABA autoreceptors.
    Waldmeier PC; Wicki P; Feldtrauer JJ; Baumann PA
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Oct; 340(4):372-8. PubMed ID: 2555718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.