These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25593978)

  • 1. Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects.
    Buckley EM; Parthasarathy AB; Grant PE; Yodh AG; Franceschini MA
    Neurophotonics; 2014 Jun; 1(1):. PubMed ID: 25593978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting the microvascular contributions to diffuse correlation spectroscopy measurements of cerebral hemodynamics using optical coherence tomography angiography.
    Jang JH; Solarana K; Hammer DX; Fisher JAN
    Neurophotonics; 2021 Apr; 8(2):025006. PubMed ID: 33912621
    [No Abstract]   [Full Text] [Related]  

  • 3. Concurrent measurement of skeletal muscle blood flow during exercise with diffuse correlation spectroscopy and Doppler ultrasound.
    Bangalore-Yogananda CG; Rosenberry R; Soni S; Liu H; Nelson MD; Tian F
    Biomed Opt Express; 2018 Jan; 9(1):131-141. PubMed ID: 29359092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods.
    Fantini S; Sassaroli A; Tgavalekos KT; Kornbluth J
    Neurophotonics; 2016 Jul; 3(3):031411. PubMed ID: 27403447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interferometric diffuse optics: recent advances and future outlook.
    Zhou W; Zhao M; Srinivasan VJ
    Neurophotonics; 2023 Jan; 10(1):013502. PubMed ID: 36284601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffuse Correlation Spectroscopy (DCS) for Assessment of Tissue Blood Flow in Skeletal Muscle: Recent Progress.
    Shang Y; Gurley K; Yu G
    Anat Physiol; 2013 Dec; 3(2):128. PubMed ID: 24724043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small separation diffuse correlation spectroscopy for measurement of cerebral blood flow in rodents.
    Sathialingam E; Lee SY; Sanders B; Park J; McCracken CE; Bryan L; Buckley EM
    Biomed Opt Express; 2018 Nov; 9(11):5719-5734. PubMed ID: 30460158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffuse Optics for Tissue Monitoring and Tomography.
    Durduran T; Choe R; Baker WB; Yodh AG
    Rep Prog Phys; 2010 Jul; 73(7):. PubMed ID: 26120204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lossless Compressed Sensing of Photon Counts for Fast Diffuse Correlation Spectroscopy.
    Biswas A; Parthasarathy AB
    IEEE Access; 2022; 10():129754-129762. PubMed ID: 36644002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Non-invasive Assessment of Cerebral Hemodynamics With Diffuse Optical Spectroscopies in a Neuro Intensive Care Unit: An Observational Case Study.
    Forti RM; Katsurayama M; Menko J; Valler L; Quiroga A; Falcão ALE; Li LM; Mesquita RC
    Front Med (Lausanne); 2020; 7():147. PubMed ID: 32411712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffuse correlation spectroscopy: current status and future outlook.
    Carp SA; Robinson MB; Franceschini MA
    Neurophotonics; 2023 Jan; 10(1):013509. PubMed ID: 36704720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia.
    Selb J; Boas DA; Chan ST; Evans KC; Buckley EM; Carp SA
    Neurophotonics; 2014 Jul; 1(1):. PubMed ID: 25453036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive, multimodal analysis of cortical activity, blood volume and neurovascular coupling in infantile spasms using EEG-fNIRS monitoring.
    Bourel-Ponchel E; Mahmoudzadeh M; Delignières A; Berquin P; Wallois F
    Neuroimage Clin; 2017; 15():359-366. PubMed ID: 28580292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system.
    Tamborini D; Farzam P; Zimmermann B; Wu KC; Boas DA; Franceschini MA
    Neurophotonics; 2018 Jan; 5(1):011015. PubMed ID: 28948194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle.
    Li Z; Baker WB; Parthasarathy AB; Ko TS; Wang D; Schenkel S; Durduran T; Li G; Yodh AG
    J Biomed Opt; 2015; 20(12):125005. PubMed ID: 26720870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of diffuse correlation spectroscopy tissue blood flow measurement by acoustic radiation force.
    Ling H; Gui Z; Hao H; Shang Y
    Biomed Opt Express; 2020 Jan; 11(1):301-315. PubMed ID: 32010518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast blood flow monitoring in deep tissues with real-time software correlators.
    Wang D; Parthasarathy AB; Baker WB; Gannon K; Kavuri V; Ko T; Schenkel S; Li Z; Li Z; Mullen MT; Detre JA; Yodh AG
    Biomed Opt Express; 2016 Mar; 7(3):776-97. PubMed ID: 27231588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts.
    Baker WB; Parthasarathy AB; Ko TS; Busch DR; Abramson K; Tzeng SY; Mesquita RC; Durduran T; Greenberg JH; Kung DK; Yodh AG
    Neurophotonics; 2015 Jul; 2(3):035004. PubMed ID: 26301255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffuse optics for monitoring brain hemodynamics.
    Yodh AG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1991-3. PubMed ID: 19964030
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.