These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25594041)

  • 1. microRNAs: short non-coding bullets of gain of function mutant p53 proteins.
    Donzelli S; Strano S; Blandino G
    Oncoscience; 2014; 1(6):427-33. PubMed ID: 25594041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation by mutant p53 and oncogenesis.
    Santoro R; Strano S; Blandino G
    Subcell Biochem; 2014; 85():91-103. PubMed ID: 25201190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Small RNA Sequencing Identifies MicroRNAs Deregulated in Non-Small Cell Lung Carcinoma Harboring Gain-of-Function Mutant p53.
    Datta A; Das P; Dey S; Ghuwalewala S; Ghatak D; Alam SK; Chatterjee R; Roychoudhury S
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31661871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long Non-coding MIR205HG Depletes Hsa-miR-590-3p Leading to Unrestrained Proliferation in Head and Neck Squamous Cell Carcinoma.
    Di Agostino S; Valenti F; Sacconi A; Fontemaggi G; Pallocca M; Pulito C; Ganci F; Muti P; Strano S; Blandino G
    Theranostics; 2018; 8(7):1850-1868. PubMed ID: 29556360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexes formed by mutant p53 and their roles in breast cancer.
    Bellazzo A; Sicari D; Valentino E; Del Sal G; Collavin L
    Breast Cancer (Dove Med Press); 2018; 10():101-112. PubMed ID: 29950894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs as Key Effectors in the p53 Network.
    Goeman F; Strano S; Blandino G
    Int Rev Cell Mol Biol; 2017; 333():51-90. PubMed ID: 28729028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friend or Foe: MicroRNAs in the p53 network.
    Luo Z; Cui R; Tili E; Croce C
    Cancer Lett; 2018 Apr; 419():96-102. PubMed ID: 29330109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gain-of-function mutant p53 promotes the oncogenic potential of head and neck squamous cell carcinoma cells by targeting the transcription factors FOXO3a and FOXM1.
    Tanaka N; Zhao M; Tang L; Patel AA; Xi Q; Van HT; Takahashi H; Osman AA; Zhang J; Wang J; Myers JN; Zhou G
    Oncogene; 2018 Mar; 37(10):1279-1292. PubMed ID: 29269868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gain of function mutant p53 proteins cooperate with E2F4 to transcriptionally downregulate RAD17 and BRCA1 gene expression.
    Valenti F; Ganci F; Fontemaggi G; Sacconi A; Strano S; Blandino G; Di Agostino S
    Oncotarget; 2015 Mar; 6(8):5547-66. PubMed ID: 25650659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA Control of p53.
    Liu J; Zhang C; Zhao Y; Feng Z
    J Cell Biochem; 2017 Jan; 118(1):7-14. PubMed ID: 27216701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting Oncogenic Mutant p53 for Cancer Therapy.
    Parrales A; Iwakuma T
    Front Oncol; 2015; 5():288. PubMed ID: 26732534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity.
    Gurtner A; Falcone E; Garibaldi F; Piaggio G
    J Exp Clin Cancer Res; 2016 Mar; 35():45. PubMed ID: 26971015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiR-15/16 complex targets p70S6 kinase 1 and controls cell proliferation in MDA-MB-231 breast cancer cells.
    Janaki Ramaiah M; Lavanya A; Honarpisheh M; Zarea M; Bhadra U; Bhadra MP
    Gene; 2014 Dec; 552(2):255-64. PubMed ID: 25261849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of oncogenic transcription factors by bioactive natural products in breast cancer.
    Hasanpourghadi M; Pandurangan AK; Mustafa MR
    Pharmacol Res; 2018 Feb; 128():376-388. PubMed ID: 28923544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional activities of mutant p53: when mutations are more than a loss.
    Kim E; Deppert W
    J Cell Biochem; 2004 Nov; 93(5):878-86. PubMed ID: 15449312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting mutant p53 in cancer: a long road to precision therapy.
    Mantovani F; Walerych D; Sal GD
    FEBS J; 2017 Mar; 284(6):837-850. PubMed ID: 27808469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ChIP-on-chip analysis of in vivo mutant p53 binding to selected gene promoters.
    Dell'Orso S; Fontemaggi G; Stambolsky P; Goeman F; Voellenkle C; Levrero M; Strano S; Rotter V; Oren M; Blandino G
    OMICS; 2011 May; 15(5):305-12. PubMed ID: 21332394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial O
    Cordani M; Butera G; Dando I; Torrens-Mas M; Butturini E; Pacchiana R; Oppici E; Cavallini C; Gasperini S; Tamassia N; Nadal-Serrano M; Coan M; Rossi D; Gaidano G; Caraglia M; Mariotto S; Spizzo R; Roca P; Oliver J; Scupoli MT; Donadelli M
    Br J Cancer; 2018 Oct; 119(8):994-1008. PubMed ID: 30318520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranslational phosphorylation of mutant p53 protein in tumor development.
    Matsumoto M; Furihata M; Ohtsuki Y
    Med Mol Morphol; 2006 Jun; 39(2):79-87. PubMed ID: 16821145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p53 signaling in cancer progression and therapy.
    Marei HE; Althani A; Afifi N; Hasan A; Caceci T; Pozzoli G; Morrione A; Giordano A; Cenciarelli C
    Cancer Cell Int; 2021 Dec; 21(1):703. PubMed ID: 34952583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.