BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 25594514)

  • 1. Anchoring groups for dye-sensitized solar cells.
    Zhang L; Cole JM
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3427-55. PubMed ID: 25594514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can nitro groups really anchor onto TiO2? Case study of dye-to-TiO2 adsorption using azo dyes with NO2 substituents.
    Zhang L; Cole JM
    Phys Chem Chem Phys; 2016 Jul; 18(28):19062-9. PubMed ID: 27356762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substitution of a hydroxamic acid anchor into the MK-2 dye for enhanced photovoltaic performance and water stability in a DSSC.
    Koenigsmann C; Ripolles TS; Brennan BJ; Negre CF; Koepf M; Durrell AC; Milot RL; Torre JA; Crabtree RH; Batista VS; Brudvig GW; Bisquert J; Schmuttenmaer CA
    Phys Chem Chem Phys; 2014 Aug; 16(31):16629-41. PubMed ID: 24993024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Strategy To Boost the Efficiency of Rhodanine Electron Acceptor for Organic Dye: From Nonconjugation to Conjugation.
    Wan Z; Jia C; Wang Y; Yao X
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25225-25231. PubMed ID: 28650139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salicylic acid as a tridentate anchoring group for azo-bridged zinc porphyrin in dye-sensitized solar cells.
    Gou F; Jiang X; Li B; Jing H; Zhu Z
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12631-7. PubMed ID: 24229086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and energy level alignment at the dye-electrode interface in p-type DSSCs: new hints on the role of anchoring modes from ab initio calculations.
    Muñoz-García AB; Pavone M
    Phys Chem Chem Phys; 2015 May; 17(18):12238-46. PubMed ID: 25892559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron injection dynamics in high-potential porphyrin photoanodes.
    Milot RL; Schmuttenmaer CA
    Acc Chem Res; 2015 May; 48(5):1423-31. PubMed ID: 25938858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells.
    Brewster TP; Konezny SJ; Sheehan SW; Martini LA; Schmuttenmaer CA; Batista VS; Crabtree RH
    Inorg Chem; 2013 Jun; 52(11):6752-64. PubMed ID: 23687967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid dye adsorption via surface modification of TiO2 photoanodes for dye-sensitized solar cells.
    Kim B; Park SW; Kim JY; Yoo K; Lee JA; Lee MW; Lee DK; Kim JY; Kim B; Kim H; Han S; Son HJ; Ko MJ
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5201-7. PubMed ID: 23679678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linker dependence of interfacial electron transfer rates in Fe(II)-polypyridine sensitized solar cells.
    Bowman DN; Mukherjee S; Barnes LJ; Jakubikova E
    J Phys Condens Matter; 2015 Apr; 27(13):134205. PubMed ID: 25767105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functions of self-assembled ultrafine TiO₂ nanocrystals for high efficient dye-sensitized solar cells.
    Xie F; Cherng SJ; Lu S; Chang YH; Sha WE; Feng SP; Chen CM; Choy WC
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5367-73. PubMed ID: 24665885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment.
    Anselmi C; Mosconi E; Pastore M; Ronca E; De Angelis F
    Phys Chem Chem Phys; 2012 Dec; 14(46):15963-74. PubMed ID: 23108504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups.
    Zhang L; Cole JM; Dai C
    ACS Appl Mater Interfaces; 2014 May; 6(10):7535-46. PubMed ID: 24786472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells.
    Chen C; Yang X; Cheng M; Zhang F; Sun L
    ChemSusChem; 2013 Jul; 6(7):1270-5. PubMed ID: 23775933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the TiO2/dye/electrolyte interfaces in dye-sensitized solar cells by means of a titania-binding nitroxide.
    Fattori A; Cangiotti M; Fiorani L; Lucchi S; Ottaviani MF
    Langmuir; 2014 Nov; 30(45):13570-80. PubMed ID: 25348929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc-porphyrin dyes with different meso-aryl substituents for dye-sensitized solar cells: experimental and theoretical studies.
    Sirithip K; Prachumrak N; Rattanawan R; Keawin T; Sudyoadsuk T; Namuangruk S; Jungsuttiwong S; Promarak V
    Chem Asian J; 2015 Apr; 10(4):882-93. PubMed ID: 25267373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.
    O'Regan BC; Durrant JR
    Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harvesting UV photons for solar energy conversion applications.
    Wielopolski M; Linton KE; Marszałek M; Gulcur M; Bryce MR; Moser JE
    Phys Chem Chem Phys; 2014 Feb; 16(5):2090-9. PubMed ID: 24343589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.