These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25594531)

  • 1. Patterning magnetic regions in hydrogenated graphene via e-beam irradiation.
    Lee WK; Whitener KE; Robinson JT; Sheehan PE
    Adv Mater; 2015 Mar; 27(10):1774-8. PubMed ID: 25594531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoresolution patterning of hydrogenated graphene by electron beam induced C-H dissociation.
    Liu J; Chen S; Papadakis R; Li H
    Nanotechnology; 2018 Oct; 29(41):415304. PubMed ID: 30051882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale lithography on monolayer graphene using hydrogenation and oxidation.
    Byun IS; Yoon D; Choi JS; Hwang I; Lee DH; Lee MJ; Kawai T; Son YW; Jia Q; Cheong H; Park BH
    ACS Nano; 2011 Aug; 5(8):6417-24. PubMed ID: 21777004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsically Honeycomb-Patterned Hydrogenated Graphene.
    Song Y; Qian K; Tao L; Wang Z; Guo H; Chen H; Zhang S; Zhang YY; Lin X; Pantelides ST; Du S; Gao HJ
    Small; 2022 Jan; 18(4):e2102687. PubMed ID: 34846103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Resolution Three-Dimensional Sculpting of Two-Dimensional Graphene Oxide by E-Beam Direct Write.
    Kim S; Jung S; Lee J; Kim S; Fedorov AG
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39595-39601. PubMed ID: 32805878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography.
    Abbas AN; Liu G; Liu B; Zhang L; Liu H; Ohlberg D; Wu W; Zhou C
    ACS Nano; 2014 Feb; 8(2):1538-46. PubMed ID: 24467172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled hydrogenation of graphene sheets and nanoribbons.
    Jaiswal M; Lim CH; Bao Q; Toh CT; Loh KP; Ozyilmaz B
    ACS Nano; 2011 Feb; 5(2):888-96. PubMed ID: 21275382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A large-area 15 nm graphene nanoribbon array patterned by a focused ion beam.
    Zhang Y; Hui C; Sun R; Li K; He K; Ma X; Liu F
    Nanotechnology; 2014 Apr; 25(13):135301. PubMed ID: 24583466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphane and hydrogenated graphene.
    Pumera M; Wong CH
    Chem Soc Rev; 2013 Jul; 42(14):5987-95. PubMed ID: 23686139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice-assisted electron beam lithography of graphene.
    Gardener JA; Golovchenko JA
    Nanotechnology; 2012 May; 23(18):185302. PubMed ID: 22498712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via Birch reduction of graphite oxides.
    Eng AY; Poh HL; Šaněk F; Maryško M; Matějková S; Sofer Z; Pumera M
    ACS Nano; 2013 Jul; 7(7):5930-9. PubMed ID: 23777325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Graphene Growth on Insulators via Metal-Catalyzed Crystallization by a Laser Irradiation Process: From Laser Selection, Thickness Control to Direct Patterned Graphene Utilizing Controlled Layer Segregation Process.
    Medina H; Huang CC; Lin HC; Huang YH; Chen YZ; Yen WC; Chueh YL
    Small; 2015 Jul; 11(25):3017-27. PubMed ID: 25808659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced thermoelectric efficiency in ferromagnetic silicene nanoribbons terminated with hydrogen atoms.
    Zberecki K; Swirkowicz R; Wierzbicki M; Barnaś J
    Phys Chem Chem Phys; 2014 Jul; 16(25):12900-8. PubMed ID: 24848750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Patterning of Graphene
    Bae G; Song DS; Lim YR; Jeon IS; Jang M; Yoon Y; Jeon C; Song W; Myung S; Lee SS; Park CY; An KS
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47802-47810. PubMed ID: 32985173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic study of electronic structure from graphene to graphane.
    Chandrachud P; Pujari BS; Haldar S; Sanyal B; Kanhere DG
    J Phys Condens Matter; 2010 Nov; 22(46):465502. PubMed ID: 21403371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferromagnetism in semihydrogenated graphene sheet.
    Zhou J; Wang Q; Sun Q; Chen XS; Kawazoe Y; Jena P
    Nano Lett; 2009 Nov; 9(11):3867-70. PubMed ID: 19719081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric-Screening Reduction-Induced Large Transport Gap in Suspended Sub-10 nm Graphene Nanoribbon Functional Devices.
    Schmidt ME; Muruganathan M; Kanzaki T; Iwasaki T; Hammam AMM; Suzuki S; Ogawa S; Mizuta H
    Small; 2019 Nov; 15(46):e1903025. PubMed ID: 31573772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-free patterning of graphene at sub-10-nm scale by low-energy repetitive electron beam.
    Lan YW; Chang WH; Xiao BT; Liang BW; Chen JH; Jiang PH; Li LJ; Su YW; Zhong YL; Chen CD
    Small; 2014 Nov; 10(22):4778-84. PubMed ID: 25115736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-field imaging of graphene triangles patterned by helium ion lithography.
    Jiang X; Cai W; Luo W; Xiang Y; Zhang N; Ren M; Zhang X; Xu J
    Nanotechnology; 2018 Sep; 29(38):385205. PubMed ID: 29968574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct patterning of highly-conductive graphene@copper composites using copper naphthenate as a resist for graphene device applications.
    Bi K; Xiang Q; Chen Y; Shi H; Li Z; Lin J; Zhang Y; Wan Q; Zhang G; Qin S; Zhang X; Duan H
    Nanoscale; 2017 Nov; 9(43):16755-16763. PubMed ID: 29072744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.