These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25594784)

  • 1. A clean and general strategy to decorate a titanium metal-organic framework with noble-metal nanoparticles for versatile photocatalytic applications.
    Shen L; Luo M; Huang L; Feng P; Wu L
    Inorg Chem; 2015 Feb; 54(4):1191-3. PubMed ID: 25594784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au).
    Sun D; Liu W; Fu Y; Fang Z; Sun F; Fu X; Zhang Y; Li Z
    Chemistry; 2014 Apr; 20(16):4780-8. PubMed ID: 24644131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unsaturated metal site-promoted approach to construct strongly coupled noble metal/HNb
    Shen L; Xia Y; Lin S; Liang S; Wu L
    Nanoscale; 2017 Oct; 9(38):14654-14663. PubMed ID: 28937167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Defect Pyrochlore Oxide Sn
    Pan X; Li C; Zheng J; Liang S; Huang R; Yi Z
    Inorg Chem; 2018 Jun; 57(11):6641-6647. PubMed ID: 29775041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defect self-doped TiO₂ for visible light activity and direct noble metal anchoring.
    Pei Z; Ding L; Feng W; Weng S; Liu P
    Phys Chem Chem Phys; 2014 Oct; 16(39):21876-81. PubMed ID: 25203901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile and general preparation of high-performance noble-metal-based free-standing nanomembranes by a reagentless interfacial self-assembly strategy.
    Wu H; He H; Zhai Y; Li H; Lai J; Jin Y
    Nanoscale; 2012 Nov; 4(22):6974-80. PubMed ID: 23023515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.
    Gu X; Lu ZH; Jiang HL; Akita T; Xu Q
    J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Synthesis of Potassium Poly(heptazine imide) (PHIK)/Ti-Based Metal-Organic Framework (MIL-125-NH
    Rodríguez NA; Savateev A; Grela MA; Dontsova D
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22941-22949. PubMed ID: 28609616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ controllable loading of ultrafine noble metal particles on titania.
    Xie Y; Ding K; Liu Z; Tao R; Sun Z; Zhang H; An G
    J Am Chem Soc; 2009 May; 131(19):6648-9. PubMed ID: 19388650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery of Highly Active Noble-Metal Nanoparticles into Microspherical Supports by an Aerosol-Spray Method.
    Kan E; Kuai L; Wang W; Geng B
    Chemistry; 2015 Sep; 21(38):13291-6. PubMed ID: 26234910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance.
    Kang SW; Lee YW; Park Y; Choi BS; Hong JW; Park KH; Han SW
    ACS Nano; 2013 Sep; 7(9):7945-55. PubMed ID: 23915173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ growth of metal particles on 3D urchin-like WO3 nanostructures.
    Xi G; Ye J; Ma Q; Su N; Bai H; Wang C
    J Am Chem Soc; 2012 Apr; 134(15):6508-11. PubMed ID: 22468742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co
    Zhao X; Xu H; Wang X; Zheng Z; Xu Z; Ge J
    ACS Appl Mater Interfaces; 2018 May; 10(17):15096-15103. PubMed ID: 29641173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach.
    Aijaz A; Karkamkar A; Choi YJ; Tsumori N; Rönnebro E; Autrey T; Shioyama H; Xu Q
    J Am Chem Soc; 2012 Aug; 134(34):13926-9. PubMed ID: 22888976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis.
    Chen YZ; Xu Q; Yu SH; Jiang HL
    Small; 2015 Jan; 11(1):71-6. PubMed ID: 25201445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties.
    Xiang G; He J; Li T; Zhuang J; Wang X
    Nanoscale; 2011 Sep; 3(9):3737-42. PubMed ID: 21804982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional carbon nanotube/SnO2/noble metal nanoparticle hybrid nanostructure: synthesis, characterization, and electrochemical sensing.
    Fang Y; Guo S; Zhu C; Dong S; Wang E
    Chem Asian J; 2010 Aug; 5(8):1838-45. PubMed ID: 20583039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework.
    Yadav M; Xu Q
    Chem Commun (Camb); 2013 Apr; 49(32):3327-9. PubMed ID: 23505626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods.
    Liu X; Zhang J; Guo X; Wu S; Wang S
    Nanoscale; 2010 Jul; 2(7):1178-84. PubMed ID: 20648346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.