BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25595181)

  • 1. Superficial Layer-Specific Histaminergic Modulation of Medial Entorhinal Cortex Required for Spatial Learning.
    He C; Luo F; Chen X; Chen F; Li C; Ren S; Qiao Q; Zhang J; de Lecea L; Gao D; Hu Z
    Cereb Cortex; 2016 Apr; 26(4):1590-1608. PubMed ID: 25595181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H
    Cilz NI; Lei S
    Hippocampus; 2017 May; 27(5):613-631. PubMed ID: 28188663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histamine Enhances Theta-Coupled Spiking and Gamma Oscillations in the Medial Entorhinal Cortex Consistent With Successful Spatial Recognition.
    Chen Q; Luo F; Yue F; Xia J; Xiao Q; Liao X; Jiang J; Zhang J; Hu B; Gao D; He C; Hu Z
    Cereb Cortex; 2018 Jul; 28(7):2439-2457. PubMed ID: 28591796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic responses in superficial layers of medial entorhinal cortex from rats with kainate-induced epilepsy.
    Tolner EA; Frahm C; Metzger R; Gorter JA; Witte OW; Lopes da Silva FH; Heinemann U
    Neurobiol Dis; 2007 May; 26(2):419-38. PubMed ID: 17350275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of T-Type calcium channels in mEC layer II stellate neurons reduces neuronal hyperexcitability associated with epilepsy.
    Nigam A; Hargus NJ; Barker BS; Ottolini M; Hounshell JA; Bertram EH; Perez-Reyes E; Patel MK
    Epilepsy Res; 2019 Aug; 154():132-138. PubMed ID: 31132598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basolateral Amygdala Inputs to the Medial Entorhinal Cortex Selectively Modulate the Consolidation of Spatial and Contextual Learning.
    Wahlstrom KL; Huff ML; Emmons EB; Freeman JH; Narayanan NS; McIntyre CK; LaLumiere RT
    J Neurosci; 2018 Mar; 38(11):2698-2712. PubMed ID: 29431646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine modulates the excitability of layer II stellate neurons in entorhinal cortex through A1 receptors.
    Li Y; Fan S; Yan J; Li B; Chen F; Xia J; Yu Z; Hu Z
    Hippocampus; 2011 Mar; 21(3):265-80. PubMed ID: 20054814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex.
    Canto CB; Witter MP
    Hippocampus; 2012 Jun; 22(6):1277-99. PubMed ID: 22161956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stellate Cells in the Medial Entorhinal Cortex Are Required for Spatial Learning.
    Tennant SA; Fischer L; Garden DLF; Gerlei KZ; Martinez-Gonzalez C; McClure C; Wood ER; Nolan MF
    Cell Rep; 2018 Jan; 22(5):1313-1324. PubMed ID: 29386117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat.
    van Haeften T; Baks-te-Bulte L; Goede PH; Wouterlood FG; Witter MP
    Hippocampus; 2003; 13(8):943-52. PubMed ID: 14750656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Ih to the relative facilitation of synaptic responses induced by carbachol in the entorhinal cortex during repetitive stimulation of the parasubiculum.
    Sparks DW; Chapman CA
    Neuroscience; 2014 Oct; 278():81-92. PubMed ID: 25130557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscarinic M4 receptors regulate GABAergic transmission in rat tuberomammillary nucleus neurons.
    Nakamura M; Jang IS
    Neuropharmacology; 2012 Nov; 63(6):936-44. PubMed ID: 22828639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss.
    Scharfman HE; Goodman JH; Du F; Schwarcz R
    J Neurophysiol; 1998 Dec; 80(6):3031-46. PubMed ID: 9862904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA(B) receptors couple to potassium and calcium channels on identified lateral perforant pathway projection neurons.
    Wang X; Lambert NA
    J Neurophysiol; 2000 Feb; 83(2):1073-8. PubMed ID: 10669518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histamine innervation and activation of septohippocampal GABAergic neurones: involvement of local ACh release.
    Xu C; Michelsen KA; Wu M; Morozova E; Panula P; Alreja M
    J Physiol; 2004 Dec; 561(Pt 3):657-70. PubMed ID: 15486020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex.
    Woodhall GL; Bailey SJ; Thompson SE; Evans DI; Jones RS
    Hippocampus; 2005; 15(2):232-45. PubMed ID: 15386594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamatergic regulation of brain histamine neurons: In vivo microdialysis and electrophysiology studies in the rat.
    Fell MJ; Flik G; Dijkman U; Folgering JH; Perry KW; Johnson BJ; Westerink BH; Svensson KA
    Neuropharmacology; 2015 Dec; 99():1-8. PubMed ID: 26100446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor and Ionic Mechanism of Histamine on Mouse Dorsolateral Striatal Neurons.
    Peng JY; Shen KL; Fan XJ; Qi ZX; Huang HW; Jiang JL; Lu JH; Wang XQ; Fang XX; Yuan WR; Deng QX; Chen S; Chen L; Zhuang QX
    Mol Neurobiol; 2023 Jan; 60(1):183-202. PubMed ID: 36245064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex.
    Canto CB; Witter MP
    Hippocampus; 2012 Jun; 22(6):1256-76. PubMed ID: 22162008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct mechanisms of bidirectional activity-dependent synaptic plasticity in superficial and deep layers of rat entorhinal cortex.
    Solger J; Wozny C; Manahan-Vaughan D; Behr J
    Eur J Neurosci; 2004 Apr; 19(7):2003-7. PubMed ID: 15078576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.