BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 25595471)

  • 1. Bimolecular based heparin and self-assembling hydrogel for tissue engineering applications.
    Fernández-Muiños T; Recha-Sancho L; López-Chicón P; Castells-Sala C; Mata A; Semino CE
    Acta Biomater; 2015 Apr; 16():35-48. PubMed ID: 25595471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heparin-based self-assembling peptide scaffold reestablish chondrogenic phenotype of expanded de-differentiated human chondrocytes.
    Recha-Sancho L; Semino CE
    J Biomed Mater Res A; 2016 Jul; 104(7):1694-706. PubMed ID: 26939919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering.
    Recha-Sancho L; Semino CE
    PLoS One; 2016; 11(6):e0157603. PubMed ID: 27315119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro.
    Meng F; He A; Zhang Z; Zhang Z; Lin Z; Yang Z; Long Y; Wu G; Kang Y; Liao W
    J Biomed Mater Res A; 2014 Aug; 102(8):2725-35. PubMed ID: 24026971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired seeding of biomaterials using three dimensional microtissues induces chondrogenic stem cell differentiation and cartilage formation under growth factor free conditions.
    Leijten J; Teixeira LS; Bolander J; Ji W; Vanspauwen B; Lammertyn J; Schrooten J; Luyten FP
    Sci Rep; 2016 Nov; 6():36011. PubMed ID: 27808102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-instructive starPEG-heparin-collagen composite matrices.
    Binner M; Bray LJ; Friedrichs J; Freudenberg U; Tsurkan MV; Werner C
    Acta Biomater; 2017 Apr; 53():70-80. PubMed ID: 28216298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering.
    Montembault A; Tahiri K; Korwin-Zmijowska C; Chevalier X; Corvol MT; Domard A
    Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair.
    Kisiday J; Jin M; Kurz B; Hung H; Semino C; Zhang S; Grodzinsky AJ
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9996-10001. PubMed ID: 12119393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.
    Cheng TY; Chen MH; Chang WH; Huang MY; Wang TW
    Biomaterials; 2013 Mar; 34(8):2005-16. PubMed ID: 23237515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of two- and three-dimensional cell culture on the chondrogenic potential of human adipose-derived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel.
    Merceron C; Portron S; Masson M; Lesoeur J; Fellah BH; Gauthier O; Geffroy O; Weiss P; Guicheux J; Vinatier C
    Cell Transplant; 2011; 20(10):1575-88. PubMed ID: 21294960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondrogenic potential of human dermal fibroblasts in a contractile, soft, self-assembling, peptide hydrogel.
    Bussmann BM; Reiche S; Marí-Buyé N; Castells-Sala C; Meisel HJ; Semino CE
    J Tissue Eng Regen Med; 2016 Feb; 10(2):E54-62. PubMed ID: 23737099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration.
    Santo VE; Popa EG; Mano JF; Gomes ME; Reis RL
    Acta Biomater; 2015 Jun; 19():56-65. PubMed ID: 25795623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering.
    Karam JP; Muscari C; Sindji L; Bastiat G; Bonafè F; Venier-Julienne MC; Montero-Menei NC
    J Control Release; 2014 Oct; 192():82-94. PubMed ID: 24998940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-based cultures generate scaffold-free neocartilage in vitro: influence of growth factors.
    Mayer-Wagner S; Schiergens TS; Sievers B; Docheva D; Schieker M; Betz OB; Jansson V; Müller PE
    Tissue Eng Part A; 2010 Feb; 16(2):513-21. PubMed ID: 19715388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells.
    Zhang L; Yuan T; Guo L; Zhang X
    J Biomed Mater Res A; 2012 Oct; 100(10):2717-25. PubMed ID: 22623365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrogenic induction of human mesenchymal stem cells using combined growth factors for cartilage tissue engineering.
    Bosetti M; Boccafoschi F; Leigheb M; Bianchi AE; Cannas M
    J Tissue Eng Regen Med; 2012 Mar; 6(3):205-13. PubMed ID: 21360690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel.
    Nguyen LH; Kudva AK; Saxena NS; Roy K
    Biomaterials; 2011 Oct; 32(29):6946-52. PubMed ID: 21723599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chondromimetic microsphere for in situ spatially controlled chondrogenic differentiation of human mesenchymal stem cells.
    Ansboro S; Hayes JS; Barron V; Browne S; Howard L; Greiser U; Lalor P; Shannon F; Barry FP; Pandit A; Murphy JM
    J Control Release; 2014 Apr; 179():42-51. PubMed ID: 24491910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.