These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 25595505)

  • 1. Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.
    Kauppi JP; Kandemir M; Saarinen VM; Hirvenkari L; Parkkonen L; Klami A; Hari R; Kaski S
    Neuroimage; 2015 May; 112():288-298. PubMed ID: 25595505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy.
    Combrisson E; Jerbi K
    J Neurosci Methods; 2015 Jul; 250():126-36. PubMed ID: 25596422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hierarchical Bayesian method to resolve an inverse problem of MEG contaminated with eye movement artifacts.
    Fujiwara Y; Yamashita O; Kawawaki D; Doya K; Kawato M; Toyama K; Sato MA
    Neuroimage; 2009 Apr; 45(2):393-409. PubMed ID: 19150653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the semantic category of internally generated words from neuromagnetic recordings.
    Simanova I; van Gerven MA; Oostenveld R; Hagoort P
    J Cogn Neurosci; 2015 Jan; 27(1):35-45. PubMed ID: 25061927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEG-based decoding of the spatiotemporal dynamics of visual category perception.
    van de Nieuwenhuijzen ME; Backus AR; Bahramisharif A; Doeller CF; Jensen O; van Gerven MA
    Neuroimage; 2013 Dec; 83():1063-73. PubMed ID: 23927900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Gaussian probabilistic MEG source localisation based on kernel density estimation.
    Mohseni HR; Kringelbach ML; Woolrich MW; Baker A; Aziz TZ; Probert-Smith P
    Neuroimage; 2014 Feb; 87():444-64. PubMed ID: 24055702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding magnetoencephalographic rhythmic activity using spectrospatial information.
    Kauppi JP; Parkkonen L; Hari R; Hyvärinen A
    Neuroimage; 2013 Dec; 83():921-36. PubMed ID: 23872494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular and cardiac artifact rejection for real-time analysis in MEG.
    Breuer L; Dammers J; Roberts TP; Shah NJ
    J Neurosci Methods; 2014 Aug; 233():105-14. PubMed ID: 24954539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals.
    Yoshioka T; Toyama K; Kawato M; Yamashita O; Nishina S; Yamagishi N; Sato MA
    Neuroimage; 2008 Oct; 42(4):1397-413. PubMed ID: 18620066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
    Engemann DA; Gramfort A
    Neuroimage; 2015 Mar; 108():328-42. PubMed ID: 25541187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human MT/V5 activity on viewing eye gaze changes in others: A magnetoencephalographic study.
    Watanabe S; Kakigi R; Miki K; Puce A
    Brain Res; 2006 May; 1092(1):152-60. PubMed ID: 16684514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Support MEG imaging.
    Nagarajan SS; Portniaguine O; Hwang D; Johnson C; Sekihara K
    Neuroimage; 2006 Nov; 33(3):878-85. PubMed ID: 16978882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of two-dimensional movement trajectories from selected magnetoencephalography cortical currents by combined sparse Bayesian methods.
    Toda A; Imamizu H; Kawato M; Sato MA
    Neuroimage; 2011 Jan; 54(2):892-905. PubMed ID: 20884361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information processing in the human brain: magnetoencephalographic approach.
    Lounasmaa OV; Hämäläinen M; Hari R; Salmelin R
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8809-15. PubMed ID: 8799107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic relevance determination based hierarchical Bayesian MEG inversion in practice.
    Nummenmaa A; Auranen T; Hämäläinen MS; Jääskeläinen IP; Sams M; Vehtari A; Lampinen J
    Neuroimage; 2007 Sep; 37(3):876-89. PubMed ID: 17627847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding and encoding of visual patterns using magnetoencephalographic data represented in manifolds.
    Kuo PC; Chen YS; Chen LF; Hsieh JC
    Neuroimage; 2014 Nov; 102 Pt 2():435-50. PubMed ID: 25072391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An MEG-Compatible Electromagnetic-Tracking System for Monitoring Orofacial Kinematics.
    Alves N; Jobst C; Hotze F; Ferrari P; Lalancette M; Chau T; van Lieshout P; Cheyne D
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1709-17. PubMed ID: 26571510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on magnetoencephalography-brain computer interface based on the PCA and LDA data reduction].
    Wang J; Zhou L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1069-74. PubMed ID: 22295687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding the perception of endogenous pain from resting-state MEG.
    Kuo PC; Chen YT; Chen YS; Chen LF
    Neuroimage; 2017 Jan; 144(Pt A):1-11. PubMed ID: 27746387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on decoding models for the reconstruction of hand trajectories from the human magnetoencephalography.
    Yeom HG; Hong W; Kang DY; Chung CK; Kim JS; Kim SP
    Biomed Res Int; 2014; 2014():176857. PubMed ID: 25050324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.