These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25595534)

  • 1. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.
    Johansson K; Frederiksen SS; Degerman M; Breil MP; Mollerup JM; Nilsson B
    J Chromatogr A; 2015 Feb; 1381():64-73. PubMed ID: 25595534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Modeling of Reversed-Phase Chromatography of Insulins with Potassium Chloride and Ethanol as Mobile-Phase Modulators.
    Arkell K; Breil MP; Frederiksen SS; Nilsson B
    ACS Omega; 2017 Jan; 2(1):136-146. PubMed ID: 30023511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of hydrophobic-interaction and reversed-phase chromatography of proteins.
    Fausnaugh JL; Kennedy LA; Regnier FE
    J Chromatogr; 1984 Dec; 317():141-55. PubMed ID: 6530430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Modeling of Reversed-Phase Chromatography of Insulins within the Temperature Range 10-40 °C.
    Arkell K; Breil MP; Frederiksen SS; Nilsson B
    ACS Omega; 2018 Feb; 3(2):1946-1954. PubMed ID: 30023818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microenvironmental contributions to the chromatographic behavior of subtilisin in hydrophobic-interaction and reversed-phase chromatography.
    Chicz RM; Regnier FE
    J Chromatogr; 1990 Feb; 500():503-18. PubMed ID: 2184168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.
    Zhao K; Yang L; Wang X; Bai Q; Yang F; Wang F
    Talanta; 2012 Aug; 98():86-94. PubMed ID: 22939132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of a novel dual-retention mechanism mixed-mode stationary phase with PEG 400 and succinic anhydride as ligand for protein separation in WCX and HIC modes.
    Song C; Wang J; Zhao K; Bai Q
    Biomed Chromatogr; 2013 Dec; 27(12):1741-53. PubMed ID: 23893694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pareto-optimal reversed-phase chromatography separation of three insulin variants with a solubility constraint.
    Arkell K; Knutson HK; Frederiksen SS; Breil MP; Nilsson B
    J Chromatogr A; 2018 Jan; 1532():98-104. PubMed ID: 29198837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of organic modifier and temperature on protein denaturation in hydrophobic interaction chromatography.
    Bobaly B; Beck A; Veuthey JL; Guillarme D; Fekete S
    J Pharm Biomed Anal; 2016 Nov; 131():124-132. PubMed ID: 27589029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis.
    Melmer M; Stangler T; Premstaller A; Lindner W
    J Chromatogr A; 2011 Jan; 1218(1):118-23. PubMed ID: 21122866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of PEGylated variants of ribonuclease A and apo-α-lactalbumin via reversed phase chromatography.
    Cisneros-Ruiz M; Mayolo-Deloisa K; Rito-Palomares M; Przybycien TM
    J Chromatogr A; 2014 Sep; 1360():209-16. PubMed ID: 25130086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective protein separation by coupling hydrophobic interaction and reverse phase chromatography for top-down proteomics.
    Xiu L; Valeja SG; Alpert AJ; Jin S; Ge Y
    Anal Chem; 2014 Aug; 86(15):7899-906. PubMed ID: 24968279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Studies on the separation method with multiple injection of proteins].
    Chang J; Guo L
    Se Pu; 1997 Mar; 15(2):141-3. PubMed ID: 15739404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic interaction chromatography of peptides as an alternative to reversed-phase chromatography.
    Alpert AJ
    J Chromatogr; 1988 Jul; 444():269-74. PubMed ID: 3204135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory and use of hydrophobic interaction chromatography in protein purification applications.
    McCue JT
    Methods Enzymol; 2009; 463():405-14. PubMed ID: 19892185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive study to protein retention in hydrophobic interaction chromatography.
    Baca M; De Vos J; Bruylants G; Bartik K; Liu X; Cook K; Eeltink S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct; 1032():182-188. PubMed ID: 27237734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of calcitonin structure with chromatographic retention in high-performance liquid chromatography.
    Heinitz ML; Flanigan E; Orlowski RC; Regnier FE
    J Chromatogr; 1988 Jun; 443():229-45. PubMed ID: 3170689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of a novel weak cation exchange/hydrophobic interaction chromatography dual-function polymer-based stationary phase for protein separation using "thiol-ene click chemistry".
    Yang F; Bai Q; Zhao K; Gao D; Tian L
    Anal Bioanal Chem; 2015 Feb; 407(6):1721-34. PubMed ID: 25543148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.
    Rackiewicz M; Große-Hovest L; Alpert AJ; Zarei M; Dengjel J
    J Proteome Res; 2017 Jun; 16(6):2318-2323. PubMed ID: 28485144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobile phase effects in reversed-phase and hydrophilic interaction liquid chromatography revisited.
    Jandera P; Hájek T; Šromová Z
    J Chromatogr A; 2018 Mar; 1543():48-57. PubMed ID: 29486886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.