BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25595652)

  • 1. Changes in tumour volume and motion during radiotherapy for thoracic oesophageal cancer.
    Wang JZ; Li JB; Wang W; Qi HP; Ma ZF; Zhang YJ; Li FX; Fan TY; Shao Q; Xu M
    Radiother Oncol; 2015 Feb; 114(2):201-5. PubMed ID: 25595652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of contrast enhancement in delineating GTV and constructing IGTV of thoracic oesophageal cancer based on 4D-CT scans.
    Wang JZ; Li JB; Qi HP; Li YK; Wang Y; Zhang YJ; Wang W
    Radiother Oncol; 2016 Apr; 119(1):172-8. PubMed ID: 26987472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of interfraction displacement and volume variance during radiotherapy of primary thoracic esophageal cancer based on repeated four-dimensional CT scans.
    Wang JZ; Li JB; Wang W; Qi HP; Ma ZF; Zhang YJ; Fan TY; Shao Q; Xu M
    Radiat Oncol; 2013 Sep; 8():224. PubMed ID: 24074144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary study of the internal margin of the gross tumor volume in thoracic esophageal cancer.
    Li J; Wang L; Wang X; Zhao Y; Liu D; Chen C; Zhang HP; Pan J
    Cancer Radiother; 2012 Oct; 16(7):595-600. PubMed ID: 23079507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated gross tumor volume contour generation for large-scale analysis of early-stage lung cancer patients planned with 4D-CT.
    Davey A; van Herk M; Faivre-Finn C; Brown S; McWilliam A
    Med Phys; 2021 Feb; 48(2):724-732. PubMed ID: 33290579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility and potential benefits of defining the internal gross tumor volume of hepatocellular carcinoma using contrast-enhanced 4D CT images obtained by deformable registration.
    Xu H; Gong G; Wei H; Chen L; Chen J; Lu J; Liu T; Zhu J; Yin Y
    Radiat Oncol; 2014 Oct; 9():221. PubMed ID: 25319176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of interfractional variation of the centroid position and volume of internal target volume during stereotactic body radiotherapy of lung cancer using cone-beam computed tomography.
    Sun Y; Ge H; Cheng S; Yang C; Zhu Q; Li D; Tian Y
    J Appl Clin Med Phys; 2016 Mar; 17(2):461-472. PubMed ID: 27074466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparison of three methods to delineate internal gross target volume of the primary hepatocarcinoma based on four-dimensional CT simulation images].
    Xing J; Li JB; Zhang YJ; Li FX; Fan TY; Xu M; Shang DP; Han JJ
    Zhonghua Zhong Liu Za Zhi; 2012 Feb; 34(2):122-8. PubMed ID: 22780930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non-Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage?
    Ahmed N; Venkataraman S; Johnson K; Sutherland K; Loewen SK
    Clin Med Insights Oncol; 2017; 11():1179554917698461. PubMed ID: 28469512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.
    Sloth Møller D; Knap MM; Nyeng TB; Khalil AA; Holt MI; Kandi M; Hoffmann L
    Acta Oncol; 2017 Nov; 56(11):1604-1609. PubMed ID: 28885090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment and validation of the internal gross tumour volume of gastroesophageal junction cancer during simultaneous integrated boost radiotherapy.
    Shi J; Tang Y; Li N; Song Y; Wang S; Liu Y; Fang H; Lu N; Tang Y; Qi S; Chen B; Li Y; Liu W; Jin J
    Radiat Oncol; 2022 Feb; 17(1):22. PubMed ID: 35115015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thoracic target volume delineation using various maximum-intensity projection computed tomography image sets for radiotherapy treatment planning.
    Zamora DA; Riegel AC; Sun X; Balter P; Starkschall G; Mawlawi O; Pan T
    Med Phys; 2010 Nov; 37(11):5811-20. PubMed ID: 21158293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications.
    Johnson C; Price G; Khalifa J; Faivre-Finn C; Dekker A; Moore C; van Herk M
    Radiother Oncol; 2018 Feb; 126(2):355-361. PubMed ID: 29223683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-adjusted internal target volume: a novel approach focusing on heterogeneity of tumor motion based on 4-dimensional computed tomography imaging for radiation therapy planning of lung cancer.
    Nishibuchi I; Kimura T; Nakashima T; Ochi Y; Takahashi I; Doi Y; Kenjo M; Kaneyasu Y; Ozawa S; Murakami Y; Wadasaki K; Nagata Y
    Int J Radiat Oncol Biol Phys; 2014 Aug; 89(5):1129-1137. PubMed ID: 25035218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression.
    Han C; Sampath S; Schultheisss TE; Wong JYC
    Med Dosim; 2017 Summer; 42(2):116-121. PubMed ID: 28433482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient-based delineation of the primary GTV on FLT PET in squamous cell cancer of the thoracic esophagus and impact on radiotherapy planning.
    Zhang G; Han D; Ma C; Lu J; Sun T; Liu T; Zhu J; Zhou J; Yin Y
    Radiat Oncol; 2015 Jan; 10():11. PubMed ID: 25572431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling pancreatic tumor motion using 4-dimensional computed tomography and surrogate markers.
    Huguet F; Yorke ED; Davidson M; Zhang Z; Jackson A; Mageras GS; Wu AJ; Goodman KA
    Int J Radiat Oncol Biol Phys; 2015 Mar; 91(3):579-87. PubMed ID: 25680600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor motion changes in stereotactic body radiotherapy for liver tumors: an evaluation based on four-dimensional cone-beam computed tomography and fiducial markers.
    Shimohigashi Y; Toya R; Saito T; Ikeda O; Maruyama M; Yonemura K; Nakaguchi Y; Kai Y; Yamashita Y; Oya N; Araki F
    Radiat Oncol; 2017 Mar; 12(1):61. PubMed ID: 28335794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addition of MRI for CT-based pancreatic tumor delineation: a feasibility study.
    Gurney-Champion OJ; Versteijne E; van der Horst A; Lens E; Rütten H; Heerkens HD; Paardekooper GMRM; Berbee M; Rasch CRN; Stoker J; Engelbrecht MRW; van Herk M; Nederveen AJ; Klaassen R; van Laarhoven HWM; van Tienhoven G; Bel A
    Acta Oncol; 2017 Jul; 56(7):923-930. PubMed ID: 28375667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of patient-specific internal gross tumor volume for radiation treatment of primary esophageal cancer based separately on three-dimensional and four-dimensional computed tomography images.
    Wang W; Li J; Zhang Y; Li F; Xu M; Fan T; Shao Q; Shang D
    Dis Esophagus; 2014; 27(4):348-54. PubMed ID: 23796234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.