These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 25596028)
1. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass. Khosravi C; Benocci T; Battaglia E; Benoit I; de Vries RP Adv Appl Microbiol; 2015; 90():1-28. PubMed ID: 25596028 [TBL] [Abstract][Full Text] [Related]
2. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus? Culleton H; McKie V; de Vries RP Biotechnol J; 2013 Aug; 8(8):884-94. PubMed ID: 23674519 [TBL] [Abstract][Full Text] [Related]
3. Regulation of plant biomass utilization in Aspergillus. Kowalczyk JE; Benoit I; de Vries RP Adv Appl Microbiol; 2014; 88():31-56. PubMed ID: 24767425 [TBL] [Abstract][Full Text] [Related]
4. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Wang BT; Hu S; Yu XY; Jin L; Zhu YJ; Jin FJ Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32121667 [TBL] [Abstract][Full Text] [Related]
5. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. de Vries RP Appl Microbiol Biotechnol; 2003 Mar; 61(1):10-20. PubMed ID: 12658510 [TBL] [Abstract][Full Text] [Related]
6. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Mäkelä MR; Marinović M; Nousiainen P; Liwanag AJ; Benoit I; Sipilä J; Hatakka A; de Vries RP; Hildén KS Adv Appl Microbiol; 2015; 91():63-137. PubMed ID: 25911233 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional regulation of plant cell wall degradation by filamentous fungi. Aro N; Pakula T; Penttilä M FEMS Microbiol Rev; 2005 Sep; 29(4):719-39. PubMed ID: 16102600 [TBL] [Abstract][Full Text] [Related]
8. Fungal enzyme sets for plant polysaccharide degradation. van den Brink J; de Vries RP Appl Microbiol Biotechnol; 2011 Sep; 91(6):1477-92. PubMed ID: 21785931 [TBL] [Abstract][Full Text] [Related]
9. Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification. Mäkelä MR; Mansouri S; Wiebenga A; Rytioja J; de Vries RP; Hildén KS N Biotechnol; 2016 Dec; 33(6):834-841. PubMed ID: 27469436 [TBL] [Abstract][Full Text] [Related]
11. CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. Peng M; Khosravi C; Lubbers RJM; Kun RS; Aguilar Pontes MV; Battaglia E; Chen C; Dalhuijsen S; Daly P; Lipzen A; Ng V; Yan J; Wang M; Visser J; Grigoriev IV; Mäkelä MR; de Vries RP Cell Surf; 2021 Dec; 7():100050. PubMed ID: 33778219 [TBL] [Abstract][Full Text] [Related]
12. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization. Benoit I; Zhou M; Vivas Duarte A; Downes DJ; Todd RB; Kloezen W; Post H; Heck AJ; Maarten Altelaar AF; de Vries RP Sci Rep; 2015 Aug; 5():13592. PubMed ID: 26314379 [TBL] [Abstract][Full Text] [Related]
13. Phylogenomic Analyses of Nucleotide-Sugar Biosynthetic and Interconverting Enzymes Illuminate Cell Wall Composition in Fungi. Schwerdt J; Qiu H; Shirley N; Little A; Bulone V mBio; 2021 Apr; 12(2):. PubMed ID: 33849982 [TBL] [Abstract][Full Text] [Related]