BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 25596028)

  • 1. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass.
    Khosravi C; Benocci T; Battaglia E; Benoit I; de Vries RP
    Adv Appl Microbiol; 2015; 90():1-28. PubMed ID: 25596028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus?
    Culleton H; McKie V; de Vries RP
    Biotechnol J; 2013 Aug; 8(8):884-94. PubMed ID: 23674519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of plant biomass utilization in Aspergillus.
    Kowalczyk JE; Benoit I; de Vries RP
    Adv Appl Microbiol; 2014; 88():31-56. PubMed ID: 24767425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi.
    Wang BT; Hu S; Yu XY; Jin L; Zhu YJ; Jin FJ
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32121667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production.
    de Vries RP
    Appl Microbiol Biotechnol; 2003 Mar; 61(1):10-20. PubMed ID: 12658510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.
    Mäkelä MR; Marinović M; Nousiainen P; Liwanag AJ; Benoit I; Sipilä J; Hatakka A; de Vries RP; Hildén KS
    Adv Appl Microbiol; 2015; 91():63-137. PubMed ID: 25911233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional regulation of plant cell wall degradation by filamentous fungi.
    Aro N; Pakula T; Penttilä M
    FEMS Microbiol Rev; 2005 Sep; 29(4):719-39. PubMed ID: 16102600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal enzyme sets for plant polysaccharide degradation.
    van den Brink J; de Vries RP
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1477-92. PubMed ID: 21785931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification.
    Mäkelä MR; Mansouri S; Wiebenga A; Rytioja J; de Vries RP; Hildén KS
    N Biotechnol; 2016 Dec; 33(6):834-841. PubMed ID: 27469436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases.
    Guerriero G; Hausman JF; Strauss J; Ertan H; Siddiqui KS
    Plant Sci; 2015 May; 234():180-93. PubMed ID: 25804821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner.
    Peng M; Khosravi C; Lubbers RJM; Kun RS; Aguilar Pontes MV; Battaglia E; Chen C; Dalhuijsen S; Daly P; Lipzen A; Ng V; Yan J; Wang M; Visser J; Grigoriev IV; Mäkelä MR; de Vries RP
    Cell Surf; 2021 Dec; 7():100050. PubMed ID: 33778219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization.
    Benoit I; Zhou M; Vivas Duarte A; Downes DJ; Todd RB; Kloezen W; Post H; Heck AJ; Maarten Altelaar AF; de Vries RP
    Sci Rep; 2015 Aug; 5():13592. PubMed ID: 26314379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenomic Analyses of Nucleotide-Sugar Biosynthetic and Interconverting Enzymes Illuminate Cell Wall Composition in Fungi.
    Schwerdt J; Qiu H; Shirley N; Little A; Bulone V
    mBio; 2021 Apr; 12(2):. PubMed ID: 33849982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Regulation Shifts Shed Light on Fungal Adaption in Plant Biomass Decomposers.
    Zhang J; Silverstein KAT; Castaño JD; Figueroa M; Schilling JS
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and Postgenomic Diversity of Fungal Plant Biomass Degradation Approaches.
    de Vries RP; Mäkelä MR
    Trends Microbiol; 2020 Jun; 28(6):487-499. PubMed ID: 32396827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass.
    Benoit I; Culleton H; Zhou M; DiFalco M; Aguilar-Osorio G; Battaglia E; Bouzid O; Brouwer CPJM; El-Bushari HBO; Coutinho PM; Gruben BS; Hildén KS; Houbraken J; Barboza LAJ; Levasseur A; Majoor E; Mäkelä MR; Narang HM; Trejo-Aguilar B; van den Brink J; vanKuyk PA; Wiebenga A; McKie V; McCleary B; Tsang A; Henrissat B; de Vries RP
    Biotechnol Biofuels; 2015; 8():107. PubMed ID: 26236396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus.
    Wu VW; Thieme N; Huberman LB; Dietschmann A; Kowbel DJ; Lee J; Calhoun S; Singan VR; Lipzen A; Xiong Y; Monti R; Blow MJ; O'Malley RC; Grigoriev IV; Benz JP; Glass NL
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6003-6013. PubMed ID: 32111691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass degrading enzymes from anaerobic rumen fungi.
    Chen H; Li XL; Ljungdahl LG
    SAAS Bull Biochem Biotechnol; 1995; 8():1-6. PubMed ID: 7546571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.
    van Kuijk SJA; Sonnenberg ASM; Baars JJP; Hendriks WH; Cone JW
    Biotechnol Adv; 2015; 33(1):191-202. PubMed ID: 25447421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant biomass degradation by fungi.
    Mäkelä MR; Donofrio N; de Vries RP
    Fungal Genet Biol; 2014 Nov; 72():2-9. PubMed ID: 25192611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.