These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25596401)

  • 1. Detecting associations of rare variants with common diseases: collapsing or haplotyping?
    Wang M; Lin S
    Brief Bioinform; 2015 Sep; 16(5):759-68. PubMed ID: 25596401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FamLBL: detecting rare haplotype disease association based on common SNPs using case-parent triads.
    Wang M; Lin S
    Bioinformatics; 2014 Sep; 30(18):2611-8. PubMed ID: 24849576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of haplotype-based statistical tests for disease association with rare and common variants.
    Datta AS; Biswas S
    Brief Bioinform; 2016 Jul; 17(4):657-71. PubMed ID: 26338417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting rare haplotype-environment interaction with logistic Bayesian LASSO.
    Biswas S; Xia S; Lin S
    Genet Epidemiol; 2014 Jan; 38(1):31-41. PubMed ID: 24272913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting rare haplotypes associated with complex diseases using both population and family data: Combined logistic Bayesian Lasso.
    Zhou X; Wang M; Lin S
    Stat Methods Med Res; 2020 Nov; 29(11):3340-3350. PubMed ID: 32493129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The power comparison of the haplotype-based collapsing tests and the variant-based collapsing tests for detecting rare variants in pedigrees.
    Guo W; Shugart YY
    BMC Genomics; 2014 Jul; 15(1):632. PubMed ID: 25070353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of haplotype-based tests for detecting gene-environment interactions with rare variants.
    Papachristou C; Biswas S
    Brief Bioinform; 2020 May; 21(3):851-862. PubMed ID: 31329820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kullback-Leibler divergence for detection of rare haplotype common disease association.
    Lin S
    Eur J Hum Genet; 2015 Nov; 23(11):1558-65. PubMed ID: 25735482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data.
    Li B; Leal SM
    Am J Hum Genet; 2008 Sep; 83(3):311-21. PubMed ID: 18691683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Family-Based Rare Haplotype Association Method for Quantitative Traits.
    Datta AS; Lin S; Biswas S
    Hum Hered; 2018; 83(4):175-195. PubMed ID: 30799419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for haplotype uncertainty in matched association studies: a comparison of simple and flexible techniques.
    Kraft P; Cox DG; Paynter RA; Hunter D; De Vivo I
    Genet Epidemiol; 2005 Apr; 28(3):261-72. PubMed ID: 15637718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logistic Bayesian LASSO for identifying association with rare haplotypes and application to age-related macular degeneration.
    Biswas S; Lin S
    Biometrics; 2012 Jun; 68(2):587-97. PubMed ID: 21955118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting rare haplotype association with two correlated phenotypes of binary and continuous types.
    Yuan X; Biswas S
    Stat Med; 2021 Apr; 40(8):1877-1900. PubMed ID: 33438281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haplotyping methods for pedigrees.
    Gao G; Allison DB; Hoeschele I
    Hum Hered; 2009; 67(4):248-66. PubMed ID: 19172084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bivariate logistic Bayesian LASSO for detecting rare haplotype association with two correlated phenotypes.
    Yuan X; Biswas S
    Genet Epidemiol; 2019 Dec; 43(8):996-1017. PubMed ID: 31544985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting disease association with rare variants in case-parents studies.
    Li YM; Xiang Y
    J Hum Genet; 2017 Apr; 62(5):549-552. PubMed ID: 28148922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two adaptive weighting methods to test for rare variant associations in family-based designs.
    Fang S; Sha Q; Zhang S
    Genet Epidemiol; 2012 Jul; 36(5):499-507. PubMed ID: 22674630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Logistic Bayesian LASSO for genetic association analysis of data from complex sampling designs.
    Zhang Y; Hofmann JN; Purdue MP; Lin S; Biswas S
    J Hum Genet; 2017 Sep; 62(9):819-829. PubMed ID: 28424482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of genetic association of multiple rare variants using collapsing methods.
    Sun YV; Sung YJ; Tintle N; Ziegler A
    Genet Epidemiol; 2011; 35 Suppl 1(Suppl 1):S101-6. PubMed ID: 22128049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association studies using haplotype clustering with a new haplotype similarity.
    Jin L; Zhu W; Guo J
    Genet Epidemiol; 2010 Sep; 34(6):633-41. PubMed ID: 20718046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.