These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 25596556)

  • 21. Electrical resistivity survey to search for a recent clandestine burial of a homicide victim, UK.
    Pringle JK; Jervis JR
    Forensic Sci Int; 2010 Oct; 202(1-3):e1-7. PubMed ID: 20471188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disturbances in the soil: finding buried bodies and other evidence using ground penetrating radar.
    Miller PS
    J Forensic Sci; 1996 Jul; 41(4):648-52. PubMed ID: 8754575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Geophysical monitoring of simulated homicide burials for forensic investigations.
    Pringle JK; Stimpson IG; Wisniewski KD; Heaton V; Davenward B; Mirosch N; Spencer F; Jervis JR
    Sci Rep; 2020 May; 10(1):7544. PubMed ID: 32371989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ground penetrating radar and electrical resistivity tomography surveys with a subsequent intrusive investigation in search for the missing Beaumont children in Adelaide, South Australia.
    Berezowski V; Mallett X; Simyrdanis K; Kowlessar J; Bailey M; Moffat I
    Forensic Sci Int; 2024 Apr; 357():111996. PubMed ID: 38522323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Location and assessment of an historic (150-160 years old) mass grave using geographic and ground penetrating radar investigation, NW Ireland.
    Ruffell A; McCabe A; Donnelly C; Sloan B
    J Forensic Sci; 2009 Mar; 54(2):382-94. PubMed ID: 19215325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel approach to 3D modelling ground-penetrating radar (GPR) data - A case study of a cemetery and applications for criminal investigation.
    Kelly TB; Angel MN; O'Connor DE; Huff CC; Morris LE; Wach GD
    Forensic Sci Int; 2021 Aug; 325():110882. PubMed ID: 34182205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inorganic elemental analysis of decomposition fluids of an in situ animal burial.
    Dick HC; Pringle JK
    Forensic Sci Int; 2018 Aug; 289():130-139. PubMed ID: 29864599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soilwater Conductivity Analysis to Date and Locate Clandestine Graves of Homicide Victims.
    Pringle JK; Cassella JP; Jervis JR; Williams A; Cross P; Cassidy NJ
    J Forensic Sci; 2015 Jul; 60(4):1052-60. PubMed ID: 26190264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary soilwater conductivity analysis to date clandestine burials of homicide victims.
    Pringle JK; Cassella JP; Jervis JR
    Forensic Sci Int; 2010 May; 198(1-3):126-33. PubMed ID: 20211533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilizing Drone-Based Ground-Penetrating Radar for Crime Investigations in Localizing and Identifying Clandestine Graves.
    Lijcklama À Nijeholt L; Kronshorst TY; Teeffelen KV; van Manen B; Emaus R; Knotter J; Mersha A
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Searching for the IRA "disappeared": ground-penetrating radar investigation of a churchyard burial site, Northern Ireland.
    Ruffell A
    J Forensic Sci; 2005 Nov; 50(6):1430-5. PubMed ID: 16382841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Search for "Fred": An Unusual Vertical Burial Case.
    Wisniewski KD; Cooper N; Heaton V; Hope C; Pirrie D; Mitten AJ; Pringle JK
    J Forensic Sci; 2019 Sep; 64(5):1530-1539. PubMed ID: 30802952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drone aerial imagery for the simulation of a neonate burial based on the geoforensic search strategy (GSS).
    Rocke B; Ruffell A; Donnelly L
    J Forensic Sci; 2021 Jul; 66(4):1506-1519. PubMed ID: 33576508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GPR and bulk ground resistivity surveys in graveyards: locating unmarked burials in contrasting soil types.
    Hansen JD; Pringle JK; Goodwin J
    Forensic Sci Int; 2014 Apr; 237():e14-29. PubMed ID: 24559798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term effects of hydrated lime and quicklime on the decay of human remains using pig cadavers as human body analogues: Field experiments.
    Schotsmans EM; Fletcher JN; Denton J; Janaway RC; Wilson AS
    Forensic Sci Int; 2014 May; 238():141.e1-141.e13. PubMed ID: 24513400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of hydrated lime and quicklime on the decay of buried human remains using pig cadavers as human body analogues.
    Schotsmans EM; Denton J; Dekeirsschieter J; Ivaneanu T; Leentjes S; Janaway RC; Wilson AS
    Forensic Sci Int; 2012 Apr; 217(1-3):50-9. PubMed ID: 22030481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ground penetrating radar surveys to locate 1918 Spanish flu victims in permafrost.
    Davis JL; Heginbottom JA; Annan AP; Daniels RS; Berdal BP; Bergan T; Duncan KE; Lewin PK; Oxford JS; Roberts N; Skehel JJ; Smith CR
    J Forensic Sci; 2000 Jan; 45(1):68-76. PubMed ID: 10641921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The detection of clandestine graves in an arid environment using thermal imaging deployed from an unmanned aerial vehicle.
    Alawadhi A; Eliopoulos C; Bezombes F
    J Forensic Sci; 2023 Jul; 68(4):1286-1291. PubMed ID: 37194428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of magnetic susceptibility as a forensic search tool.
    Pringle JK; Giubertoni M; Cassidy NJ; Wisniewski KD; Hansen JD; Linford NT; Daniels RM
    Forensic Sci Int; 2015 Jan; 246():31-42. PubMed ID: 25460105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and evaluation of a bioreactor with application to forensic burial environments.
    Dunphy MA; Weisensee KE; Mikhailova EA; Harman MK
    Forensic Sci Int; 2015 Dec; 257():242-251. PubMed ID: 26476697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.