BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25596630)

  • 1. Mechanical characterization of stomach tissue under uniaxial tensile action.
    Jia ZG; Li W; Zhou ZR
    J Biomech; 2015 Feb; 48(4):651-658. PubMed ID: 25596630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomach stress and strain depend on location, direction and the layered structure.
    Zhao J; Liao D; Chen P; Kunwald P; Gregersen H
    J Biomech; 2008 Dec; 41(16):3441-7. PubMed ID: 19004444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tension and stress in the rat and rabbit stomach are location- and direction-dependent.
    Zhao J; Liao D; Gregersen H
    Neurogastroenterol Motil; 2005 Jun; 17(3):388-98. PubMed ID: 15916626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical and microstructural characterisation of the porcine stomach wall: Location- and layer-dependent investigations.
    Bauer M; Morales-Orcajo E; Klemm L; Seydewitz R; Fiebach V; Siebert T; Böl M
    Acta Biomater; 2020 Jan; 102():83-99. PubMed ID: 31760221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-examination of the mechanical anisotropy of porcine thoracic aorta by uniaxial tensile tests.
    Chen Q; Wang Y; Li ZY
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):167. PubMed ID: 28155705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation of the Anisotropic Mechanical Response of the Porcine Thoracic Aorta.
    Myneni M; Sridhar RL; Rajagopal KR; Benjamin CC
    Ann Biomed Eng; 2022 Apr; 50(4):452-466. PubMed ID: 35226280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of layer separation on the determination of stomach smooth muscle properties.
    Borsdorf M; Böl M; Siebert T
    Pflugers Arch; 2021 Jun; 473(6):911-920. PubMed ID: 33900446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical characterization of the passive porcine stomach.
    Holzer CS; Pukaluk A; Viertler C; Regitnig P; Caulk AW; Eschbach M; Contini EM; Holzapfel GA
    Acta Biomater; 2024 Jan; 173():167-183. PubMed ID: 37984627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional differences in stomach stretch during organ filling and their implications on the mechanical stress response.
    Papenkort S; Borsdorf M; Kiem S; Böl M; Siebert T
    J Biomech; 2024 May; 168():112107. PubMed ID: 38677029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes.
    Yang J; Zhao J; Liao D; Gregersen H
    J Biomech; 2006; 39(5):894-904. PubMed ID: 16488228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bladder wall biomechanics: A comprehensive study on fresh porcine urinary bladder.
    Jokandan MS; Ajalloueian F; Edinger M; Stubbe PR; Baldursdottir S; Chronakis IS
    J Mech Behav Biomed Mater; 2018 Mar; 79():92-103. PubMed ID: 29287227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling.
    Holzapfel GA; Sommer G; Gasser CT; Regitnig P
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2048-58. PubMed ID: 16006541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical properties of the stomach: A comprehensive comparative analysis of human and porcine gastric tissue.
    Friis SJ; Hansen TS; Poulsen M; Gregersen H; Brüel A; Vinge Nygaard J
    J Mech Behav Biomed Mater; 2023 Feb; 138():105614. PubMed ID: 36527978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.
    Sommer G; Schriefl A; Zeindlinger G; Katzensteiner A; Ainödhofer H; Saxena A; Holzapfel GA
    Acta Biomater; 2013 Dec; 9(12):9379-91. PubMed ID: 23933485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The viscoelasticity, anisotropy and location-dependence of mechanical properties of rabbit iris investigated using uniaxial tensile tests.
    Li T; Qin X; Liu Z; Zhang H; Li L
    Acta Bioeng Biomech; 2023; 25(2):85-92. PubMed ID: 38314516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of homeostatic elastic moduli in two layers of the esophagus.
    Gregersen H; Liao D; Fung YC
    J Biomech Eng; 2008 Feb; 130(1):011005. PubMed ID: 18298181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of uniaxial and biaxial mechanical properties of the annulus fibrosus: a porcine model.
    Gregory DE; Callaghan JP
    J Biomech Eng; 2011 Feb; 133(2):024503. PubMed ID: 21280886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic properties of the passive mechanical behavior of the porcine carotid artery: influence of proximal and distal positions.
    García A; Martínez MA; Peña E
    Biorheology; 2012; 49(4):271-88. PubMed ID: 22836081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On a coupled electro-chemomechanical model of gastric smooth muscle contraction.
    Klemm L; Seydewitz R; Borsdorf M; Siebert T; Böl M
    Acta Biomater; 2020 Jun; 109():163-181. PubMed ID: 32294551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.