These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 25596654)

  • 1. Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device.
    Fenwick AQ; Gregoire JM; Luca OR
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):47-57. PubMed ID: 25596654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.
    Luca OR; Fenwick AQ
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):26-42. PubMed ID: 26022364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: Fundamental mechanisms and recent progress.
    Hoang VC; Bui TS; Nguyen HTD; Hoang TT; Rahman G; Le QV; Nguyen DLT
    Environ Res; 2021 Nov; 202():111781. PubMed ID: 34333011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis.
    Smith PT; Nichols EM; Cao Z; Chang CJ
    Acc Chem Res; 2020 Mar; 53(3):575-587. PubMed ID: 32124601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards solar fuels from water and CO2.
    Centi G; Perathoner S
    ChemSusChem; 2010 Feb; 3(2):195-208. PubMed ID: 20155779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards artificial leaves for solar hydrogen and fuels from carbon dioxide.
    Bensaid S; Centi G; Garrone E; Perathoner S; Saracco G
    ChemSusChem; 2012 Mar; 5(3):500-21. PubMed ID: 22431486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Catalyst Immobilized Photocathodes for Water/Proton and Carbon Dioxide Reduction.
    Tian H
    ChemSusChem; 2015 Nov; 8(22):3746-59. PubMed ID: 26437747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thickness- and Particle-Size-Dependent Electrochemical Reduction of Carbon Dioxide on Thin-Layer Porous Silver Electrodes.
    Zhang L; Wang Z; Mehio N; Jin X; Dai S
    ChemSusChem; 2016 Mar; 9(5):428-32. PubMed ID: 26822587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ
    ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid bioinorganic approach to solar-to-chemical conversion.
    Nichols EM; Gallagher JJ; Liu C; Su Y; Resasco J; Yu Y; Sun Y; Yang P; Chang MC; Chang CJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11461-6. PubMed ID: 26305947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal resolution of primary processes of photosynthesis.
    Junge W
    Faraday Discuss; 2015; 177():547-62. PubMed ID: 25824647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis.
    Grills DC; Polyansky DE; Fujita E
    ChemSusChem; 2017 Nov; 10(22):4359-4373. PubMed ID: 28898568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.
    Pang H; Masuda T; Ye J
    Chem Asian J; 2018 Jan; 13(2):127-142. PubMed ID: 29193762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar Panel Technologies for Light-to-Chemical Conversion.
    Andrei V; Wang Q; Uekert T; Bhattacharjee S; Reisner E
    Acc Chem Res; 2022 Dec; 55(23):3376-3386. PubMed ID: 36395337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Photosynthesis of Value-Added Chemicals by Electrocarboxylation of Bromobenzene with CO
    Zhang Y; Gao C; Ren H; Luo P; Wan Q; Zhou H; Chen B; Zhang X
    Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39408936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial photosynthesis with metal and covalent organic frameworks (MOFs and COFs): challenges and prospects in fuel-forming electrocatalysis.
    Heidary N; Harris TGAA; Ly KH; Kornienko N
    Physiol Plant; 2019 May; 166(1):460-471. PubMed ID: 30706497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.
    Highfield J
    Molecules; 2015 Apr; 20(4):6739-93. PubMed ID: 25884553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical reduction of CO
    Zhang Z; Guo L
    Dalton Trans; 2021 Aug; 50(32):11158-11166. PubMed ID: 34328160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.