These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25597008)

  • 21. Small RNA: can RNA interference be exploited for therapy?
    Wall NR; Shi Y
    Lancet; 2003 Oct; 362(9393):1401-3. PubMed ID: 14585643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local and systemic delivery of siRNAs for oligonucleotide therapy.
    Takeshita F; Hokaiwado N; Honma K; Banas A; Ochiya T
    Methods Mol Biol; 2009; 487():83-92. PubMed ID: 19301643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity.
    Kubo T; Yanagihara K; Takei Y; Mihara K; Sato Y; Seyama T
    Biochem Biophys Res Commun; 2012 Oct; 426(4):571-7. PubMed ID: 22982308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-free translation system from Drosophila S2 cells that recapitulates RNAi.
    Wakiyama M; Kaitsu Y; Yokoyama S
    Biochem Biophys Res Commun; 2006 May; 343(4):1067-71. PubMed ID: 16579973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The road to therapeutic RNA interference (RNAi): Tackling the 800 pound siRNA delivery gorilla.
    Meade BR; Dowdy SF
    Discov Med; 2009 Dec; 8(43):253-6. PubMed ID: 20040280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNAi-based methods for gene silencing in mouse oocytes.
    Stein P; Svoboda P; Schultz RM
    Methods Mol Biol; 2013; 957():135-51. PubMed ID: 23138949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term inhibition of hepatitis B virus in transgenic mice by double-stranded adeno-associated virus 8-delivered short hairpin RNA.
    Chen CC; Ko TM; Ma HI; Wu HL; Xiao X; Li J; Chang CM; Wu PY; Chen CH; Han JM; Yu CP; Jeng KS; Hu CP; Tao MH
    Gene Ther; 2007 Jan; 14(1):11-9. PubMed ID: 16929350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery.
    Xiong XB; Uludağ H; Lavasanifar A
    Biomaterials; 2009 Jan; 30(2):242-53. PubMed ID: 18838158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 28-day oral toxicity evaluation of small interfering RNAs and a long double-stranded RNA targeting vacuolar ATPase in mice.
    Petrick JS; Moore WM; Heydens WF; Koch MS; Sherman JH; Lemke SL
    Regul Toxicol Pharmacol; 2015 Feb; 71(1):8-23. PubMed ID: 25445299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. siRNA and miRNA for the treatment of cancer.
    Jankovic R; Radulovic S; Brankovic-Magic M
    J BUON; 2009 Sep; 14 Suppl 1():S43-9. PubMed ID: 19785069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Research progress on the development of the strategies for siRNAs delivery in vivo].
    Tang D; Mao A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Aug; 29(4):775-9. PubMed ID: 23016434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNAi therapeutics: an update on delivery.
    Nguyen T; Menocal EM; Harborth J; Fruehauf JH
    Curr Opin Mol Ther; 2008 Apr; 10(2):158-67. PubMed ID: 18386228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A review of nanocarriers for the delivery of small interfering RNA.
    Kesharwani P; Gajbhiye V; Jain NK
    Biomaterials; 2012 Oct; 33(29):7138-50. PubMed ID: 22796160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Illuminating the silence: understanding the structure and function of small RNAs.
    Rana TM
    Nat Rev Mol Cell Biol; 2007 Jan; 8(1):23-36. PubMed ID: 17183358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity.
    Akhtar S; Benter I
    Adv Drug Deliv Rev; 2007 Mar; 59(2-3):164-82. PubMed ID: 17481774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells.
    Marques JT; Devosse T; Wang D; Zamanian-Daryoush M; Serbinowski P; Hartmann R; Fujita T; Behlke MA; Williams BR
    Nat Biotechnol; 2006 May; 24(5):559-65. PubMed ID: 16648842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications.
    Meade BR; Gogoi K; Hamil AS; Palm-Apergi C; van den Berg A; Hagopian JC; Springer AD; Eguchi A; Kacsinta AD; Dowdy CF; Presente A; Lönn P; Kaulich M; Yoshioka N; Gros E; Cui XS; Dowdy SF
    Nat Biotechnol; 2014 Dec; 32(12):1256-61. PubMed ID: 25402614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference.
    Naito Y; Yamada T; Matsumiya T; Ui-Tei K; Saigo K; Morishita S
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W589-91. PubMed ID: 15980542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overcoming RNAi transduction in leukocytes using targeted and stabilized nanoparticles.
    Elfakess R; Peer D
    IDrugs; 2010 Sep; 13(9):626-31. PubMed ID: 20799145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Translating RNA interference into therapies for human disease.
    Mahanthappa N
    Pharmacogenomics; 2005 Dec; 6(8):879-83. PubMed ID: 16296951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.