These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25597326)

  • 1. In situ spectroscopic identification of neptunium(V) inner-sphere complexes on the hematite-water interface.
    Müller K; Gröschel A; Rossberg A; Bok F; Franzen C; Brendler V; Foerstendorf H
    Environ Sci Technol; 2015 Feb; 49(4):2560-7. PubMed ID: 25597326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ spectroscopic evidence for neptunium(V)-carbonate inner-sphere and outer-sphere ternary surface complexes on hematite surfaces.
    Arai Y; Moran PB; Honeyman BD; Davis JA
    Environ Sci Technol; 2007 Jun; 41(11):3940-4. PubMed ID: 17612172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic identification of binary and ternary surface complexes of Np(V) on gibbsite.
    Gückel K; Rossberg A; Müller K; Brendler V; Bernhard G; Foerstendorf H
    Environ Sci Technol; 2013 Dec; 47(24):14418-25. PubMed ID: 24219402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the Np(V) sorption on ZrO
    Jessat I; Foerstendorf H; Rossberg A; Scheinost AC; Lützenkirchen J; Heim K; Stumpf T; Jordan N
    J Hazard Mater; 2024 Jan; 461():132168. PubMed ID: 37742379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controls on the Fate and Speciation of Np(V) During Iron (Oxyhydr)oxide Crystallization.
    Bots P; Shaw S; Law GT; Marshall TA; Mosselmans JF; Morris K
    Environ Sci Technol; 2016 Apr; 50(7):3382-90. PubMed ID: 26913955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of Np(V) onto TiO2, SiO2, and ZnO: an in situ ATR FT-IR spectroscopic study.
    Müller K; Foerstendorf H; Brendler V; Bernhard G
    Environ Sci Technol; 2009 Oct; 43(20):7665-70. PubMed ID: 19921876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a ternary neptunyl(V) biscarbonato inner-sphere sorption complex inhibits calcite growth rate.
    Heberling F; Scheinost AC; Bosbach D
    J Contam Hydrol; 2011 Jun; 124(1-4):50-6. PubMed ID: 21429616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ni(II) complexation to amorphous hydrous ferric oxide: an X-ray absorption spectroscopy study.
    Xu Y; Axe L; Boonfueng T; Tyson TA; Trivedi P; Pandya K
    J Colloid Interface Sci; 2007 Oct; 314(1):10-7. PubMed ID: 17561066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface complexation of 2,5-dihydroxybenzoic acid (gentisic acid) at the nanosized hematite-water interface: an ATR-FTIR study and modeling approach.
    Hanna K; Quilès F
    Langmuir; 2011 Mar; 27(6):2492-500. PubMed ID: 21332169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic evidence for Ni(II) surface speciation at the iron oxyhydroxides-water interface.
    Arai Y
    Environ Sci Technol; 2008 Feb; 42(4):1151-6. PubMed ID: 18351086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.
    Huang X; Hou X; Song F; Zhao J; Zhang L
    Environ Sci Technol; 2016 Feb; 50(4):1964-72. PubMed ID: 26815307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray Analyses of Lead Adsorption on the (001), (110), and (012) Hematite Surfaces.
    Noerpel MR; Lee SS; Lenhart JJ
    Environ Sci Technol; 2016 Nov; 50(22):12283-12291. PubMed ID: 27767293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of uranyl surface complexes on ferrihydrite: Advanced EXAFS data analysis and CD-MUSIC modeling.
    Rossberg A; Ulrich KU; Weiss S; Tsushima S; Hiemstra T; Scheinostt AC
    Environ Sci Technol; 2009 Mar; 43(5):1400-6. PubMed ID: 19350910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neptunium
    Scheinost AC; Steudtner R; Hübner R; Weiss S; Bok F
    Environ Sci Technol; 2016 Oct; 50(19):10413-10420. PubMed ID: 27585550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of phosphate on tungstate sorption on hematite: A macroscopic and spectroscopic evaluation of the mechanism.
    Sallman B; Rakshit S; Lefèvre G
    Chemosphere; 2018 Dec; 213():596-601. PubMed ID: 30290330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite.
    Livens FR; Jones MJ; Hynes AJ; Charnock JM; Mosselmans JF; Hennig C; Steele H; Collison D; Vaughan DJ; Pattrick RA; Reed WA; Moyes LN
    J Environ Radioact; 2004; 74(1-3):211-9. PubMed ID: 15063549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites.
    Fernandes MM; Scheinost AC; Baeyens B
    Water Res; 2016 Aug; 99():74-82. PubMed ID: 27140904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uranium and neptunium retention mechanisms in Gallionella ferruginea/ferrihydrite systems for remediation purposes.
    Krawczyk-Bärsch E; Scheinost AC; Rossberg A; Müller K; Bok F; Hallbeck L; Lehrich J; Schmeide K
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):18342-18353. PubMed ID: 32557040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenium(IV) uptake by maghemite (γ-Fe2O3).
    Jordan N; Ritter A; Scheinost AC; Weiss S; Schild D; Hübner R
    Environ Sci Technol; 2014; 48(3):1665-74. PubMed ID: 24422437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption mechanisms of diphenylarsinic acid on ferrihydrite, goethite and hematite using sequential extraction, FTIR measurement and XAFS spectroscopy.
    Zhu M; Hu X; Tu C; Zhang H; Song F; Luo Y; Christie P
    Sci Total Environ; 2019 Jun; 669():991-1000. PubMed ID: 30970466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.